

Fundamental Networking in Java

Also by Esmond Pitt:

java.rmi: The Guide to Remote Method Invocation (Addison Wesley 2001)
(with Kathleen McNiff)

Esmond Pitt

Fundamental
Networking
in Java

Esmond Pitt BA MIEEE FACS

This book was written and typeset by the author using Adobe FrameMaker, Acrobat, and Distiller
on Macintosh and PC platforms, and supplied to the publisher and printer as an Adobe Portable
Document Format (PDF) file.

The text of the book is set in 10/11 point FF Scala and Scala Sans, designed by Martin Majoor, and
distributed by FSI FontShop International. Program text is set in Lucida Sans Typewriter, propor-
tionally reduced so as to match the x-height of the text, and indented in units of ems.

British Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2005929863

ISBN-10: 1-84628-030-3
ISBN-13: 978-1846-2803-6

Printed on acid-free paper

© Esmond Pitt 2006. All rights reserved

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be repro-
duced, stored or transmitted, in any form or by any means, with the prior permission in writing of
the publishers, or in the case of reprographic reproduction in accordance with the terms of licences
issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms
should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the relevant laws and regula-
tions and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any
errors or omissions that may be made.

Printed in the United States of America (SB)

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springeronline.com

For David Buxton Pitt

vii

��������

����	��
 xiii

������ xv

Part I ���������	��
��
������	�� 1

�������
� �����
������ 3

1.1 Why Java? 3

1.2 Organization 4

1.3 Terminology and conventions 5

1.4 Examples 6

Part II 	� � ��������
�������� 7

�������
� ���
����������ip 9

2.1 	� 9

2.2 Network addressing 10

2.3 Multi-homing 13

2.4 	��� 14

viii ���
���������	������������

Part III ��� � ������	�� 	��
�������
�������� 17

�������
� ���
����������t c p 19

3.1 Basic ��� sockets 19
3.2 Features and costs of ��� 24
3.3 Socket initialisation—servers 27
3.4 Socket initialisation—clients 32
3.5 Accepting client connections 37
3.6 Socket I/O 38
3.7 Termination 43
3.8 Socket factories 48
3.9 Permissions in ��� 51
3.10 Exceptions in ��� 51
3.11 Socket options 54
3.12 Socket timeouts 54
3.13 Socket buffers 56
3.14 Multi-homing 59
3.15 Nagle’s algorithm 60
3.16 Linger on close 61
3.17 Keep-alive 63
3.18 Urgent data 65
3.19 Traffic class 66
3.20 Performance preferences 68
3.21 Putting it all together 69

�������
� ���������� 73

4.1 Introduction 73
4.2 Channels 75
4.3 Buffers 80
4.4 Non-blocking I/O 96
4.5 Multiplexing 98
4.6 Concurrent channel operations 109
4.7 Exceptions in new I/O 113

�������
 �������t c p 117

5.1 Channels for ��� 117
5.2 ��� channel operations 119
5.3 Multiplexing in ��� 124

�������� ix

�������
� ����	��� 129

6.1 Types of firewall 129
6.2 ����� 132
6.3 ���� tunnelling 133
6.4 Java solutions 133
6.5 Network Address Translation 134

�������
! �������������� 135

7.1 A brief introduction to security 135
7.2 Introduction to � �� 136
7.3 Secure sockets in Java 141
7.4 Socket factory methods 143
7.5 Secure socket operations 146
7.6 Sessions 155
7.7 Binding & binding listeners 159
7.8 Session context 160
7.9 " � �� and channel � #$ 162
7.10 � �� and ��	 162
7.11 Debugging 164
7.12 The ���������� 165
7.13 Recommendations 168
7.14 ����� 170
7.15 Exceptions in " � �� 172
7.16 � �� system properties 173
7.17 Sample � �� client and server 175
7.18 The Java ��� %�� 	 181

�������
& ��������������������� 185

8.1 Introduction 185
8.2 The ���	�
��� class 186
8.3 Designing an ���	�
�����
�� class 191
8.4 Implementing the ���	�
�����
�� class 193
8.5 Using the ���	�
�����
�� class 205
8.6 Exercises 212

Part IV ��� � '���
(�������
�������� 215

�������
) �������udp 217

9.1 Overview 217
9.2 Simple ��� servers and clients 221

x ���
���������	������������

9.3 Datagram socket initialization 229
9.4 Datagram � #$ 233
9.5 Termination 235
9.6 Socket factories 236
9.7 Permissions 237
9.8 Exceptions 237
9.9 Socket options 239
9.10 Timeout 239
9.11 Buffers 240
9.12 Multi-homing 241
9.13 Traffic class 243
9.14 Putting it all together 243
9.15 Reliable ��� 245

�������
�* �������u d p 261

10.1 Channels for ��� 261
10.2 ��
��������
I/O 262
10.3 Multiplexing 264

�������
� � ���������udp 269

11.1 Introduction 269
11.2 Benefits 275
11.3 Limitations 275
11.4 Applications of multicast 277
11.5 Broadcasting in Java 278
11.6 Multicasting in Java 281
11.7 Multicasting and channel � #$ 290
11.8 Broadcast and multicast permissions 291
11.9 Multicast address allocation 291
11.10 Reliable multicast 292

Part V ��
����� 	�� 297

�������
�� ��������
����������
��� 299

12.1 Import statements 300
12.2 Servers 300
12.3 Channel � #$ servers 319
12.4 Client models 334
12.5 "�� 1.5 executors 336
12.6 Staged event-driven architectures 336

�������� xi

�������
� � ��������������	������ 339

13.1 Eight fallacies of networking 339
13.2 Further fallacies 342
13.3 In conclusion 345

Part VI +�����	��� 347

 tcp �!��������� 349
" ��������
�!��
������ 353
� #��������� 357
��������$��
�% 359
&��������
�% 373

xiii

����	��

The Java platform and language were conceived with networking support as a
core design principle. A measure of its success in this area is how unusual it is
today to find a Java application that does not have at least some measure of net-
work awareness or dependence. Developers today routinely build applications
and services that a decade ago would have been regarded as highly complex and
requiring rare expertise.

Frameworks, containers, and the high-level Java networking APIs have encap-
sulated this complexity, insulating developers from dealing with many tradi-
tional networking issues. However, many developers still make the funamental
error of taking this relative simplicity for granted by assuming that interacting
across a network is no more complex than interaction with local objects. Many of
the poorly performing or scaling applications I have seen are due to naïve deci-
sions taken without considering the ramifications of distribution across a net-
work and without attention to fundamental elements of network programming
or configuration.

I was an early reviewer of this book and I admire its economical and thorough
but eminently readable style, lucidly describing complex issues without ever out-
staying its welcome. This book combines academic rigour with a practical
approach deeply informed by real-world experience and I have no hesitation in
recommending it to developers of all experience levels. Experienced engineers
building network-centric infrastructure or services should not be without this
book. In fact, any Java developer building distributed applications such as J2EE,
Jini, and Web Services should read this book—at least to understand the funda-
mental implications of networking on application design and implementation.

���'���&������(�����������)�����

xv

������

��	�
,���
	 �
 	�������
��
- 	 �� a long-standing gap in the documenta-
tion and literature of the Java™ programming language and platform, by provid-
ing fundamental and in-depth coverage of ��� # 	� and ��� networking from
the point of view of the Java API, and by discussing advanced networking pro-
gramming techniques.1 The new I/O and networking features introduced in
"�� 1.4 provide further justification for the appearance of this text. Much of the
information in this book is either absent from or incorrectly specified in the Java
documentation and books by other hands, as I have noted throughout.

In writing this book, I have drawn on nearly twenty years’ experience in net-
work programming, over a great variety of protocols, APIs, and languages, on a
number of platforms (many now extinct), and on networks ranging in size from
an Ethernet a few inches in length, to a corporate �� between cities thousands
of miles apart, to the immense geographic spread of the Internet.

This book covers both ‘traditional’ Java stream-based I/O and so-called ‘new
I/O’ based on buffers and channels, supporting non-blocking I/O and multiplex-
ing, for both ‘plain’ and secure sockets, specfically including non-blocking
��� # � �� and ��� %�� 	 .

Server and client architectures, using both blocking and non-blocking I/O
schemes, are discussed and analysed from the point of view of scalability and
with a particular emphasis on performance analysis.

An extensive list of TCP/IP platform dependencies, not documented in Java, is
provided, along with a handy reference to the various states a TCP/IP port can
assume.

1. Sun, Java, and many Java-related terms and acronyms are trademarks of Sun Microsystems
Incorporated, Santa Clara, California. These and all other trademarks referred to in this book
remain property of their respective owners.

xvi ���
���������	������������

�,���
 ���
,���

 �
�����

I have assumed a competent reader familiar with the fundamentals of the Java
programming language, specifically the concepts of ����(���*���(���������(����'�
(
!������(� �������(� ������(and �%��!����+ with the basic principles of object-
oriented programming: ��'������� and !��)���!'���; and with the standard Java
I/O, utility, and exception classes.

I have also assumed a reader who is able to digest short passages of simple Java
code without requiring every line explained, and to turn English prose into Java
code without requiring a code sample at every turn. A very basic knowledge of
��� programming with clients and servers is assumed, although I have provided
a brief review. Finally, I assume that the reader either knows about the Internet,
hosts, and routers, or has the initiative and the resources to look them up.

I have used some of the more standardized vocabulary of design patterns, as
first seen in Gamma ����,(-�������������.�/�����������#���������*���$�������

����	��, Addison-Wesley, 1995, specifically the terms
!���,
������, ��
�,
and �����), which are now in such common use as not to require explanation. I
have also used UML sequence diagrams without definition or comment, as these
are fairly self-explanatory.

���!�

The book covers ��� downwards from the Java ��	 , through socket options and
buffers, to the ��� segment level, including the connection and termination
sequences, ��� segments, and—to a small extent—windowing, but excluding
sequence numbering, pacing, acknowledgements, and retries.

Similarly, it covers ��� downwards from the Java ��	 , through socket
options and buffers, to the ��� datagram level, including unicast, broadcast,
and multicast, and including material on reliable ��� , erasure codes, and
higher-level multicasting protocols.

I have paid particular attention to the neglected and widely misunderstood
topic of multi-homed hosts, particularly in relation to ��� unicast, broadcast,
and multicast, where multi-homing presents special difficulties.

The ��� , ��� , and ��� # � �� protocols are all covered both in blocking and
non-blocking mode, via both traditional Java streams and channel- and buffer-
oriented ‘NIO’ (new I/O). Secure sockets via � � � and ��� are covered in detail,
and the "��� % �� 	 is discussed as an alternative.

I have devoted an entire chapter to a reduction-to-practice of the "�� 1.5
���	�
���, with sample code for a complete and correct ���	�
�����
���
making this bizarre apparition actually useable for writing non-blocking � ��
servers and clients.

The organization of the book is described in section 1.2.

������ xvii

/%��������

The book excludes 	� at the packet level altogether, as well as associated proto-
cols such as 	��� , ��� , ���� , ���� , ���,, although 	��� does appear fleet-
ingly in the discussion of multicasting. These topics are definitively covered in
Stevens & Wright, tcp/ ip ���������
, Volumes I and II, Addison-Wesley, 1994–
5, whose completeness and authoritativeness I have not attempted to duplicate.

I have deliberately omitted any mention of the defunct 7-layer �� 	 Reference
Model,2 into which ��� # 	� cannot be shoehorned.

I have excluded all higher-level protocols such as ���� , ����� , and -�� . I
have also excluded "��� in its entirety, as well as Java ��	 (Remote Method
Invocation), with the exception of ��	 socket factories which present special,
undocumented difficulties. Kathleen McNiff and I have described Java ��	 in
detail in our book *�,���: 0'��&��
�����#���������'�
����������, Addison-Wes-
ley 2001.3

I have resisted without apology the recent tendency to re-present all of compu-
ter science as design patterns, even in Chapter 12, ’Server and client models’, for
which design patterns do exist. The relevant parts of Java and the Java Class
Library themselves constitute design patterns which subsume many existing pat-
terns for network programming.

This book is about networking, and so is the sample code. Java program code
which is not directly relevant to network programming does not appear. Not a
line of �� or Swing code is to be found in these pages, nor are screen shots,
console outputs, or examples of streaming audio-visuals or 3� animations. Nor
have I presented the ‘complete source code’ for some arbitrary application of lim-
ited relevance.

���������������

I am primarily indebted to the many people who researched and developed the
��� # 	� protocol suite over several decades, and whose names appear in the vari-
ous 	��- formal standards and RFCs which define the suite: some of these are
listed in the bibliography.

Any serious writer on ��� and ��� owes practically everything to the late
W. Richard Stevens, with whom I was privileged to exchange a few e-mails. Ste-
vens documented the entire protocol suite, both the specification and the ,��
4.4 implementation, in his tcp/ ip ����������
, 3 volumes, and described the Ber-
keley Sockets API in all its gruesome details in his ���%����	��������������, 2
volumes. These are now fundamental references for anyone who really wants to
understand 	� network programming in any language.

2. for which see e.g. Piscitello & Chapin, �!����)���������	������.�o s i �1�t c p / i p .
3. Much of the present chapter on firewalls first appeared there, and is used by permission.

xviii ���
���������	������������

This book started life in 1993 as a 25-page paper written in collaboration with
my brother and colleague David Pitt: the paper was privately distributed to
employees and clients, and has subsequently turned up in all sorts of surprising
places.

Several anonymous reviewers contributed significantly to the final form and
content of this book. All errors however remain mine.

My thanks go to Sun Microsystems Inc. for producing Java and supplying it
free of charge, and to Sun Microsystems Ltd, Melbourne, Australia, for providing
Solaris and Linux testing facilities.

Thanks also to my long-standing colleague Neil Belford for advice, assistance,
and encouragement. Finally, thanks to Tilly Stoové and all the Pitt family for their
understanding and support during the writing of this book.

/����
�����(����������(������2334,

Part I

Introduction to
Networking

3

��������	 �����
������

+-���
 ����	��
 ��	�
 ,��� you will have a better understanding of the
requirements of producing industrial-strength ��� # 	� network applications.
You will be shown how to achieve these ends with the Java socket classes and the
new channel classes introduced in "�� 1.4. You will be presented with an array
of choices for the design of servers and clients, and some quantitative techniques
for evaluating these choices against your requirements. You will learn how to use
secure sockets and how to get the most out of them. You will learn about data
streaming with ��� as well as datagram exchange with ��� via unicast, broad-
cast, and multicast.

�.� /�0
1���2

Java and network programming have always been a good match, for a number of
reasons.

(a) Java’s ready portability to multiple platforms and its price of zero are eco-
nomically attractive to developers.

(b) Java’s lightweight threading model makes it a good platform for writing
server applications where threads must be allocated to connections, clients,
or tasks.

(c) The Java environment is ‘safe’, and so applications written in it are relatively
immune to total program failure: 5�6 the lack of pointers eliminates all kinds
of memory reference problems: invalid pointer values, accidental over-
writes, ���.; 5��6 all exceptions and errors can be caught and handled—even
out-of-memory conditions can be non-fatal in carefully-written Java code;
5���6 uncaught runtime conditions are only fatal to the thread which encoun-
ters them, not to the entire process. Contrast this with the process-wide ef-

4 ���
���������	������������

fects of conditions like � 	����� on Unix platforms, or of general protec-
tion faults (GPFs) on 	��� platforms: neither of these can even occur in
Java except via bugs at the " �� or "�	 level.

(d) Java’s extensive and well-designed class library encapsulates 	� networking
perhaps an order of magnitude more simply than the Berkeley Sockets �� 	
(the original C-language programming interface for 	�), without losing any-
thing of major significance except the ability to deal with raw sockets or 	�
protocols other than ��� and ��� .1 The Java networking classes are also
considerably simpler and more complete than any C++ networking class
library I am aware of.

The ‘new I/O’ package and the other new networking features introduced in "��
1.4 now make Java the ideal implementation language for advanced network pro-
gramming as well, providing well-encapsulated access to non-blocking and mul-
tiplexed I/O.

�.� $����	3��	��

Part I of the book introduces network programming and outlines some of the
special problems associated with it.

Part II introduces the 	� protocol, namely the concepts of 	� address, port,
and socket, and their manifestations in Java.

Part III covers the ��� protocol. Chapter 3 describes ��� client-server pro-
gramming using Java streams; Chapter 4 introduces the "�� 1.4 ‘new I/O’ pack-
age: channels and buffers; Chapter 5 describes scalable ��� programming using
‘new I/O’ channels and buffers; Chapter 6 discusses firewalls; Chapter 7 dis-
cusses secure sockets—� �� and ��� ; and Chapter 8 discusses scalable ��� and
� �� .

Part IV covers the ��� protocol. Chapter 9 describes ��� peer-to-peer pro-
gramming using Java streams and DatagramPackets; Chapter 10 describes scal-
able ��� programming using ‘new i/O’ channels and buffers; and Chapter 11
describes ��� broadcasting and multicasting concepts and their programming
in Java in detail.

Part V covers practical matters. Chapter 12 discusses a range of scalable archi-
tectures for Java ��� servers and clients. Chapter 13 discusses numerous falla-
cies of network programming.

All sources cited are listed in the Appendices. A comprehensive glossary, a
cross-index of Java classes and methods, and a general index are provided.

1. This in turn excludes the ability to ‘ping’ at the 	��� level from Java, or to discover or
manipulate 	 � routes.

�����
������ 5

�.� ����	�����0
���
�������	���

I have followed Bjarne Stroustrup in using the unambiguous terms ‘base class’
and ‘derived class’ rather than ‘superclass’ and ‘subclass’ which lead to much
confusion.

Java code words appear in the body text in the ������� font, so as not to
impair the readability of the text. Entire examples appear in the familiar Lucida
Sans Typewriter font:

Lucida Sans Typewriter

Functions from ‘C’ APIs such as the Berkeley Sockets API appear in the tradi-
tional C italics, for example ������56,�Indented paragraphs in a smaller font, such
as the following, contain detailed matter or side remarks which can be skipped
on a first reading.

Indented paragraphs like this can be skipped on a first reading.

Syntax is specified in the usual meta-language, where square brackets [and] con-
tain optional elements, and ellipses … denote optional repetions. When introduc-
ing methods or fields of a class or interface, a short-form pseudo-Java syntax for-
mat like this is used:

class ByteBuffer extends Buffer
{
ByteBuffer compact();
// …

}

These formats are ��� complete specifications of the class or interface concerned.
Only those methods or fields for immediate discussion are listed: frequently the
same class appears later showing a different set of methods or fields. Interfaces
implemented by the class but not germane to the immediate topic are generally
omitted. As we are describing public programming interfaces, the attributes
������, ������, and ���� are generally omitted: methods can be assumed to be
public unless specifically marked ���������, and private or package-private meth-
ods are always omitted. Comments with an ellipsis (…) denote omissions or con-
tinuations.

For example, the above class is ������, as is the ������ method; it exports many more
methods than shown; and it implements the �������� interface.

6 ���
���������	������������

�.� 45������

Every complete source code example in this book has been compiled and exe-
cuted on Windows and Solaris platforms, and in many cases has been used to
interoperate between both platforms. Java code is presented in various formats
as dictated by space and pagination considerations.

Part II

	� —Internet
Protocol

9

��������
 ���
������������

��	�
�������
	��������� the 	� protocol and its realization in Java. 	�
stands for ‘Internet protocol’, and it is the fundamental protocol of the
Internet—the ‘glue’ which holds the Internet together.

� . � 	�

As �-� 791 says, ‘the Internet Protocol is designed for use in interconnected
systems of packet-switched computer communication networks’. The Internet is
nothing more than a very large number of such systems communicating, via the
	� protocol, over various kinds of packet-switched network, including Ethernets
and token-rings, telephone lines, and satellite links.

	� is the most fundamental element of a family of protocols collectively known
as ��� # 	� , consisting of sub-protocols such as ��� —address resolution proto-
col, ���� —reverse address resolution protocol, 	��� —Internet control mes-
sage protocol, ,���� —bootstrap protocol, 	��� —Internet group manage-
ment protocol, ��� —User datagram protocol, and ��� —Transmission
control protocol. This book deals with ��� and ��� ; the other protocols men-
tioned are there to support ��� and ��� in various ways and are not normally
the concern of network programmers.

	� consists of 5�6 an addressing system for hosts, 5��6 the 	� packet format
definition, and 5���6 the protocol proper—the rules about transmitting and
receiving packets.

	� presently exists in two versions of interest: 	��� , which was the first pub-
licly available version of the protocol, and 	��� , which is in limited use at the
time of writing, and which offers a massive expansion of the address space as
well as a number of improvements and new features.

10 ���
���������	������������

�.� ������
�������	��

2,2,7 ���	�������������

An Internet host is connected to the network via one or more network interfaces:
these are hardware devices, usually manifested as controller cards (network
interface controllers or NICs). Each physical network interface may have one or
more 	� addresses, discussed in the following subsection. In this way, each
Internet host has at least one 	� address. This topic is discussed further in
section 2.3.

2,2,2 	� �

������

An Internet host is identified by a fixed-width ‘	� address’. This is a number con-
sists of a ‘network’ or ‘subnet’ part, which uniquely identifies the subnetwork
within the Internet, and a ‘host’ part, which uniquely identifies the host within
the subnetwork.1

In 	��� an 	� address is a 32-bit number, written as a ‘dotted-quad’ of four 8-
bit segments, �,�, 192.168.1.24 or 127.0.0.1.

In 	��� an 	� address is a 128-bit number, written as colon-separated quads
of 8 bits each, e.g. 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:1, with the convention that two
adjacent colons indicate as many quads of zero as necessary: the address just
given can be abbreviated to ::1.

2,2,8 -���������

The numeric 	� addressing system is complemented by an alphabetic naming
system known as the Domain Name System or ��� , which partions host names
into ‘domains’ and which provides mappings between 	� addresses and host-
names, a process known as ‘resolution’.

2,2,9 �����

Each Internet host supports a large number of 	� ‘ports’, which represent indi-
vidual services within the host, and are identified by a 16-bit ‘port number’ in the
range 1–65535. Many of these port numbers are preallocated: the ‘well-known
ports’ in the range 1–1023, and the ‘registered ports’ in the range 1024–49151
(�������������). Servers at the ‘well-known ports’ require special permission in
some operating systems, �,�, super-user privilege in Unix-style systems.

1. Readers familiar with ��� —network address translation—will understand that ‘uniquely’
applies only within the subnet(s) controlled by any single ��� device, but I don’t propose to
cover ��� in this book.

���
����������	 � 11

A specific ��� or ��� service is addressed by the tuple {	� address, port
number}. This tuple is also known as a ‘socket address’.

2,2,4 �������

A communications endpoint in a host is represented by an abstraction called a
socket. A socket is associated in its local host with an 	� �address and a port
number. In Java, a socket is represented by an instance of one of the � !���
classes ���"��, ��� �����"��� ��
�����"��, or �����������"��.

2,2,: ���	����

�����������

In Java, an 	� address is represented by a � !���!#���$������. An 	� port is rep-
resented in Java by an integer in the range 1–65535, most usually 1024 or above.
An 	� socket address is represented in Java either by an {	� address, port
number} tuple or by the "�� 1.4 ���"��$������ class which encapsulates the
tuple.

The purposes and uses of the various Java network address classes are
explained in Table 2.1.

From "�� 1.4, the #���$������ class is abstract and has two derived classes:
#����$������ for 	��� and #���%$������ for 	��� . You really don’t need to be
aware of the existence of these derived classes. You can’t construct them: you
obtain instances of them via static methods of #���$������, and you are generally
better off just assuming that they are instances of #���$������. The only differ-

��,��
�.� Network address classes

���� �����	
�	�

#���$������ Represents an 	 � address or a �������
 hostname: used for
remote addresses. The object cannot be constructed if
hostname resolution fails.

#������"��$������
�������
���"��$������

Represents an 	 � socket address, �,�, a pair {	� address, port}
or {hostname, port}. In the latter case an attempt is made to
resolve the hostname when constructing the object, but the
object is still usable ‘in some circumstances like connecting
through a proxy’ if resolution fails. Can be constructed with
just a {port}, in which case the ‘wildcard’ local 	� address is
used, meaning ‘all local interfaces’.

&��'��"#������� Represents a local network interface, made up of an interface
name (e.g. ‘le0’) and a list of 	 � addresses associated with the
interface. Used for identifying local interfaces in
multicasting.

12 ���
���������	������������

ence between the derived classes from the point of view of the programmer is the
#���%$������!��#�(����������$������ method, which returns true if ‘the
address is an 	��� compatible 	��� address; or false if address is an 	���
address’.2 It is a rare Java program which needs to be concerned with this.

2,2,; �!�����	� �

������

In addition to the 	� addresses belonging to its network interface(s), an Internet
host has two extra 	� addresses, which are both usable only within the host, as
shown in Table 2.2.

The #���$������ class exports a number of methods which enquire about the
attributes of an address. These methods are summarized in Table 2.3.

2. "�� 1.4 online documentation.

��,��
�.� Special 	 � addresses

���� 	��� 	��� �����	
�	�

loopback 127.0.0.1 ::1 This is used to identify services the local host in
situations where the host’s external ��� name or
	� address are unavailable or uninteresting, �,�, in a
system which is only intended to communicate
within a single host.

wildcard 0.0.0.0 ::0 This is used when creating sockets to indicate that
they should be bound to ‘all local 	 � addresses’
rather than a specific one. This the normal case. In
Java it can be indicated by an absent or null
#���$������.

��,��
�.� #���$������ methods

���� ���	��	���������

��$�)����$������ Wildcard address: see Table 2.2.

�����"����$������ Link-local unicast address. Undefined in 	��� ; in 	��� it is
an address beginning with -� 6&* .

��������" Loopback address: see Table 2.2.

����*���� Multicast address of global scope.

�������"���� Multicast address of link-local scope.

���
����������	 � 13

The methods ����*����, �������"����, etc which return information about
multicast address scopes are discussed in section 11.1.4.

�.� 7���	%���	��

A multi-homed host is a host which has more than one 	� address. Such hosts
are commonly located at gateways between 	� subnets, and commonly have
more than one physical network interface. It is really only in such hosts that pro-
grammers need to be concerned with specific local �� addresses and network
interfaces.

Network interfaces were practically invisible in Java prior to "�� 1.4, which
introduced the &��'��"#������� class. From "�� 1.4, the network interfaces for
a host can be obtained with the methods:

class NetworkInterface
{
static Enumeration getNetworkInterfaces()

throws SocketException;
Enumeration getInetAddresses();

}

where
��&��'��"#�������� returns an 	��������� of &��'��"#��������, and

��#���$�������� returns an 	��������� of #���$��������, representing all or
possibly a subset of the 	� addresses bound to a single network interface. If there
is no security manager, the list is complete; otherwise, any #���$������ to which
access is denied by the security manager’s ����"������� method is omitted from
the list.

The accessible 	� addresses supported by a host can therefore be retrieved by
the code sequence of Example 2.1.

����&������� Multicast address of node-local scope.

����+�
���� Multicast address of organization-local scope.

������������ Multicast address of site-local scope.

����������$������ Multicast address. In 	��� this is an address in the range
224.0.0.0 to 239.255.255.255; in 	��� it is an address begin-
ning with -- .

���������� Site-local unicast address. Undefined in 	��� ; in 	��� it is an
address beginning with -� 6�* .

a. The 	��� cases refer to the specifications in �-� 2373.

��,��
�.� #���$������ methods

���� ���	��	���������

14 ���
���������	������������

� .� 	���

Java has always supported 	��� , the original version of the 	� protocol. 	��� is
the next version of 	� , which is intended to improve a number of aspects of 	���
including efficiency; extensibility; the 32-bit 	���
address space; quality-of-serv-
ice support; and transport-level authentication and privacy.

From "�� 1.4, Java also supports 	��� where the host platform does so, and it
is completely transparent to the programmer. Your existing Java networking pro-
gram automatically supports both 	��� and 	��� if executed under "�� 1.4 on
a platform supporting 	��� : you can connect to both 	��� and 	��� servers,
and you can be an 	��� and 	��� server, accepting connections from both
	��� and 	��� clients.

2,9,7 ���!�������)

	��� supports 	��� via ‘	��� -compatible addresses’. These are 128-bit 	���
address whose high-order 96 bits are zero. For example, the 	��� address
192.168.1.24 can used in 	��� as the 	��� -compatible address ::192.168.1.24.

Java’s 	��� support can be controlled via system properties. These allow you
to disable 	��� support, so that only 	��� clients and servers are supported.
You cannot disable 	��� support via these properties, although you can achieve
the same effect by specifying only 	��� network interfaces as local addresses

,,�	�����������'��"�����������-.�/�01�2!�3

	��������� ���������
1�&��'��"#�������!
��&��'��"#��������-34

'�����-���������!������	�������-33
5

&��'��"#������� ����
1�-&��'��"#�������3�'���!����	������-34

,,�	��������#���$��������������������'��"���������

Enumerationaddresses = intf.getInetAddresses();
while (addresses.hasMoreElements())
{
InetAddress address
= (InetAddress)addresses.nextElement();

// …
}

}
45�����
�.� Enumerating the local network interfaces

���
����������	 � 15

when creating or binding sockets or server sockets. In future there will be a
socket option to obtain 	��� -only behaviour on a per-socket basis.3

These system properties are described in Table 2.4.

2,9,2 �����������
����������������

In any situation where you need to determine dynamically whether you have an
	��� or an 	��� socket, the following technique can be used:

if (socket.getLocalAddress() instanceof Inet6Address)
; // you have an IPv6 socket

else
; // you have an IPv4 socket

3. The Java 	��� User Guide is distributed in the "�� &��
������������<���	������, and is
available online at ����6,,� !���!���,�7��,2!8,����,
����,���,�� %9
����,�����!����.

��,��
�.� 	��� system properties

���� ������ �����	
�	�

� !���
!������#: ����"

���� (default),
����

By default, 	��� native sockets are used if
available, allowing applications to
communicate with both 	 ��� andIPv6
hosts.

If this property is set to ����, 	��� native
sockets are always used. The application
will not be able to communicate with 	 ���
hosts.

� !���
!������#: %$��������

���� (default),
����

By default, if 	 ��� is available, 	 ��� -
mapped addresses are preferred over 	 ���
addresses, ‘for backward compatibility—
e.g. applications that depend on an 	��� -
only service, or … on the [“dotted-quad”]
representation of 	��� addresses’.

If this property is set to ����, 	���
addresses are preferred over 	��� -style
addresses, ‘allowing applications to be
tested and deployed in environments where
the application is expected to connect to
	��� services’.a

a. Both quotations from Java 1.4 	 ��� User Guide.

16 ���
���������	������������

Apart from the formats of actual 	� addresses, the � !���!#���%���"��$������
class described in section 2.2 and the ���"��!���;��������� method described in
section 3.19 are the only points in the entire � !��� package where you need to
be concerned with 	��� and 	��� .

Part III

��� —Transmission
Control Protocol

19

��������� ���
����������
tcp

��	�
�������
�	 ������� the fundamental aspects of the ��� # 	� protocol
and its realization in Java ���"�� and ��� �����"�� objects in blocking mode. This
chapter assumes an understanding of the basic concepts of ��� # 	� and Java
sockets, although a brief review is provided.

��� channel I/O and non-blocking mode are discussed in Chapter 5.

�.� 8��	�
���
�������

In this section we briefly review the basics of ��� # 	� sockets and how they are
programmed in Java.

8,7,7 tcp ���������)

��� provides reliable bidirectional streaming connections between pairs of end-
points in a client-server architecture. A ��� endpoint is defined as the tuple {ip

����(�!���} and is represented in the ��� programming interface as a ���
socket, as defined in section 2.2.5.

By streaming we mean that data transmitted and received is treated as a con-
tinuous stream of bytes, without message boundaries.

There are two kinds of ��� socket: ‘active’ and ‘passive’ (more usually known
as ‘listening’). A ��� server�creates a ��� socket; ‘binds’ it to a port; puts it into
the ‘listening’ state; and loops ‘accepting’ client connections. The client creates
an active ��� socket and ‘connects’ it to the server port. The server ‘accepts’ this
connection request, receiving in the process a new active socket representing its
end of the connection. The server and the client are now connected, and can now
reliably send each other any amount of data, in both directions simultaneously if
necessary. Data sent over this connection is delivered intact and in the correct
sequence, as a data stream rather than as distinct messages.

20 ���
���������	������������

The ��� connection process is illustrated in Figure 3.1.

The resulting connection is defined by the tuple {���� !���(� ����

����(
������ !���(� ������

����}. Every ��� segment contains this tuple, which
ensures that it is delivered to the correct endpoint.

The material in this section is provided to illustrate the succeeding sections on
��� options. More advanced architectures for ��� servers and clients are dis-
cussed in Chapter 12.

8,7,2 ��!�������������

The following Java import statements are assumed in the examples throughout
this chapter.

import java.io.*;
import java.net.*;
import java.util.*;

8,7,8 ���!���tcp ��������������

In Java, a server’s passive socket is represented by a � !���!��� �����"��. A ���
server constructs a � !���!��� �����"�� and loops calling ��� �����"��!�����.
Each iteration of this loop returns a � !���!���"�� representing an accepted con-
nection.

The simplest possible ��� server processes each connection before accepting
a new one, as sketched in Example 3.1.

9	����
�.�. ��� client and server connection processing

Passive server
socket

Active client
socket

Active server
socket

Client requests
connection to pas-
sive socket

Server accepts
connection, cre-
ating active
socket

Client and server com-
municate over reliable
connection between ac-
tive sockets

���
����������t cp 21

class TCPServer implements Runnable
{
private ServerSocket serverSocket;

// constructor
public TCPServer(int port) throws IOException
{
this.serverSocket = new ServerSocket(port);

}

public void run()
{
for (;;)
{
try
{
Socket socket = serverSocket.accept();
new ConnectionHandler(socket).run();

}
catch (IOException e) { /*…*/ }

} // end finally
} // end run()

} // end class

45�����
�.� Single-threaded ��� server

The connection-handling class for this and subsequent servers is shown in
Example 3.2.

public class ConnectionHandler implements Runnable
{
private Socket socket;

public ConnectionHandler(Socket socket)
{
this.socket = socket;

}

public void run()
{
handleConversation(socket);

}

/** @param socket Socket: must be closed on exit */
public void handleConversation(Socket socket)
{
try
{

22 ���
���������	������������

InputStream in = socket.getInputStream();
// read request from the input:
// conversation not shown …
OutputStream out = socket.getOutputStream();
// write reply to the output
out.flush();

}
catch (IOException e) { /*…*/ }
finally
{
try { socket.close(); } catch (IOException e) {}

} // end finally
} // end run()

} // end class

45�����
�.� ��� server connection handler

The single-threaded design of Example 3.1 is rarely adequate, because it proc-
esses clients sequentially, not concurrently—a new client blocks while the previ-
ous client is being serviced. To handle clients concurrently, the server must use a
different thread per accepted connection. The simplest form of such a ���
server, using the same connection-handling class, is sketched in Example 3.3.

class TCPServer implements Runnable
{
ServerSocket serverSocket;

// constructor as before

public void run()
{
for (;;)
{
try
{
Socket socket = serverSocket.accept();
new Thread(new ConnectionHandler(socket)).start();

}
catch (IOException e) { /*…*/ }

} // end finally
} // end run()

} // end class

45�����
�.� Simple ��� server—multi-threaded

���
����������t cp 23

A connection-handling class which simply echoes its input to its output, very use-
ful for testing, is shown in Example 3.4.

class EchoConnectionHandler extends ConnectionHandler
{
EchoConnectionHandler(Socket socket)
{
super(socket);

}

/** @param socket Socket: must be closed on exit */
public void handleConversation(Socket socket)
{
try
{
InputStream in = socket.getInputStream();
OutputStream out = socket.getOutputStream();
// read requests from the input until EOF
byte[] buffer = new byte[8192];
int count;
while ((count = in.read(buffer)) >= 0)
{
// echo input to the output
out.write(buffer,0,count);
out.flush();

} // loop terminates at EOF
}
catch (IOException e)
{
/*…*/

}
finally
{
try { socket.close(); } catch (IOException e) {}

} // end finally
} // end run()

} // end class

45�����
�.� ��� server connection handler—echo

8,7,9 ���!���tcp ��������������

In Java, the client end of the connection is represented by a � !���!���"��,
which is usually constructed already connected to the server port. A typical ���
client is sketched in Example 3.5.

24 ���
���������	������������

class TCPClient implements Runnable
{
Socket socket;

public void run()
{
try
{
socket = new Socket(host,port);
OutputStream out = socket.getOutputStream();
// write request, not shown …
out.flush();
InputStream in = socket.getInputStream();
// get reply …

}
catch (IOException e) { /*…*/ }
finally
// ensure socket is closed
{
try
{
if (socket != null)
socket.close();

}
catch (IOException e) {}

} // end finally
} // end run()

} // end class

45�����
�. ��� client

�.� 9�������
���
�����
�-
���

As we have seen above, ���
implements a bidirectional reliable data stream over
which arbitrarily large quantities of data can be transmitted in either direction, or
both directions simultaneously.

8,2,7 �������

In ��� , data receptions are automatically acknowledged, sequenced, and resent
as necessary. The application cannot receive corrupt or out-of-sequence data, or
data ‘holes’.

Transmissions are automatically paced to the capacity of the intervening net-
work, and re-transmitted as necessary if not acknowledged.

���
����������t cp 25

+ ll available bandwidth is used without saturating the network or being unfair
to other network users.

��� rapidly and reliably adjusts to changing network conditions—varying
loads and routes.

��� implements a ‘negotiated connect’ to ensure that a server is up and run-
ning, and that the server host has accepted a client’s connection request, before
the client’s connection request completes.

��� implements a ‘negotiated close’ to ensure that all data in flight is trans-
mitted and received before the connection is finally dropped.

8,2,2 �����

All these features have associated costs. There are computational overheads, pro-
tocol overheads, and time overheads:

(a) Connection negotiation consists of a three-way exchange of packets.

The client sends a �0� ; the server responds with a �0�#��� ; and the client
responds with an ��� .1 If the first �0� produces no response it is retried at
increasing intervals a number of times. The first retry interval is implemen-
tation-dependent, typically three to six seconds, and is at least doubled on
each failure. The total time spent trying to connect is also implementation-
dependent, often limited to 75 seconds or three retries. Therefore, in total, a
typical time for a completely unsuccessful connection attempt might be
6+12+24 = 42 seconds.

(b) Close negotiation consists of a four-way exchange of packets.

Each side sends a - 	� and replies to an incoming - 	� with an ��� .

(c) Data sequencing, acknowledgement, and pacing requires quite a bit of com-
putation, which includes maintaining a statistically smoothed estimator of
the current round-trip time for a packet travelling between the two end-
points.

(d) The provisions for congestion avoidance require an exponentially increas-
ing retry timer on retransmissions (‘exponential backoff’) and a slow start to
the transmission:2 this implies that the first few packets are generally ex-
changed at a sub-optimal speed, although the speed increases exponentially
to the maximum feasible.

1. For more information on low-level details of the ��� protocol see Stevens, W.R., t c p / i p

���������
�=�������.
2. �-� 1122: Host Requirements.

26 ���
���������	������������

8,2,8 tcp ��
���>����$��!�)�����������

��� is designed for bulk data transfer. For a simple request-reply transaction
which notionally requires sending only one 	� packet in each direction, the total
efficiency of the system is not very high, because at least nine ��� segments are
actually exchanged, as shown in the sequence diagram of Figure 3.2.

The packets in each direction are paced and are subject to the requirement for
‘slow start’, with the exception of acknowledgement packets.

In mitigation of the above, the request acknowledgement can be coalesced into the
reply packet if the reply is issued quickly enough, and the reply acknowledgement can
be coalesced into the disconnection (- 	�) packet if the disconnection is issued quickly
enough.

9	����
�.�. ��� segment exchanges for a request/reply transaction

����� blocks�������
blocks

Sends
request

Sends reply

Closes

Closes

SYN/ACK

ACK

FIN

FIN

ACK

ACK

request data

reply data

�������
returns �����

returns

Receives
reply &
����

SYN

Client Server

ACK

ACK

Receives
request &
����

����
close

����
close

���
����������t cp 27

�.� :�����
	�	�	��	���	����������

In this section we look at all the possible steps which can be taken and all possible
parameter values which can be set when initializing a ��� �����"��.

8,8,7 ������������

A ��� �����"�� object is created with one of the following constructors:

class ServerSocket
{
ServerSocket(int port) throws IOException;
ServerSocket(int port, int backlog)throws IOException;
ServerSocket(int port, int backlog,

InetAddress localAddress)
throws IOException;

ServerSocket() throws IOException;
}

The first three of these constructors create server sockets already ‘bound’. A
bound socket is ready for use—ready for ��� �����"��!����� to be called. The
default constructor introduced in "�� 1.4 creates a server socket in the
‘unbound’ state. An unbound socket must be bound with the ��� �����"��!����
method described in section 3.3.7 before ��� �����"��!����� can be called.

First we look at the parameters for constructing already-bound sockets; we
then look at the method for binding unbound sockets.

8,8,2 ����

��� servers usually specify the local port on which they listen for connections, by
supplying a non-zero port number. If the port number is zero, a system-allocated
port number is used, whose value can be obtained by calling the method:

class ServerSocket
{
int getLocalPort();

}

If this technique is used, some external means is required of communicating the
actual port number to clients; otherwise clients won’t know how to connect to the
server. Typically this function is assumed by a naming service such as ����
(Lightweight Directory Access Protocol). In Java ��	 this function is assumed
by the ��	 Registry. In Sun ��� (Remote Procedure Call) it was assumed by the
!����!!�� service.

28 ���
���������	������������

The local port number used by an accepted connection, �,�, by a ���"�� result-
ing from ��� �����"��!�����, is returned by the method:

class Socket
{
int getLocalPort();

}

This is always equal to the port at which the server socket is listening. That’s the
port the client has connected to, so there is no other possibility.3

Using a ‘well-known’ port, �,�, a port in the range 1–1023, in a ��� �����"��
may require special privileges, �,�, super-user permission in Unix -like systems.

8,8,8 "�����

��� itself can get ahead of a ��� server application in accepting connections. It
maintains a ‘backlog queue’ of connections to a listening socket which ��� iself
has completed but which have not yet been accepted by the application.4 This
queue exists between the underlying ��� implementation and the server proc-
ess which created the listening socket. The purpose of pre-completing connec-
tions is to speed up the connection phase, but the queue is limited in length so as
not to pre-form too many connections to servers which are not accepting them at
the same rate for any reason. When an incoming connection request is received
and the backlog queue is not full, ��� completes the connection protocol and
adds the connection to the backlog queue. At this point, the client application is
fully connected, but the server application has not yet received the connection as
a result value of ��� �����"��!�����. When it does so, the entry is removed from
the queue.5

The ��"��
 parameter specifies the maximum length of the backlog queue. If
��"��
 is omitted, negative, or zero, a system-chosen default is used, �,�, 50. The
backlog specified may be adjusted by the underlying platform. If the backlog
value is excessive for the platform it is silently adjusted to a legal value. No means
exists in Java or the Berkeley Sockets API for discovering the effective backlog
value.

A very small backlog value such as 1 can be used to deliberately ‘cripple’ a server appli-
cation, e.g. for product demonstration purposes, if the underlying implementation
doesn’t adjust it upwards significantly. The server still works correctly but its ability to
handle concurrent clients is severely limited.

3. Sun’s online Java Tutorial (����������	������� ��� �������������?'������������@) has been
mistaken on this point for many years.
4. This definition has varied over time. It used to include connections still being formed, �,�, those
whose �0� has been received and sent but whose completing ��� has not yet been received.

���
����������t cp 29

8,8,9 A����

����

The �����

���� of a server socket is the 	� address at which it listens for incom-
ing connections. By default, ��� servers listen at all local 	� addresses. They can
be made to listen at a ������ local 	� address, by supplying a non-null ����$������
to the constructor. If the address is omitted or null, the socket is bound to all local
	� addresses.

Specifying a local 	� address only makes sense if the local host is multi-
homed, i.e. has more than one 	� address, usually because it has more than one
physical network interface. In such a circumstance, a server may only want to
make itself available via one of these 	� addresses rather than all of them. See the
discussion of multi-homing in section 3.14 for more detail.

The local 	� address at which a server socket is listening is returned by the
following methods:

class ServerSocket
{
InetAddress getInetAddress();
SocketAddress getLocalSocketAddress();

}

5. If an incoming connection request is received when the backlog queue is full, ��� should do
nothing, rather than rejecting the request, because it is probably a transitory condition: the
connecting end should enter a retry sequence after a timeout, during which room may become
available in the queue. This has been the ,�� behaviour since the beginning, and it is shared by all
Berkeley-derived implementations including �	5 , Sun Solaris, ��- /1, Linux, ���.

However, Microsoft 	����� implementations reject backlog-exceeding connection requests
with an ��� . This implementation violates �-� 793 §3.4, #��������������: ‘As a general rule, reset
(���) must be sent whenever a segment arrives which apparently is not intended for the current
connection.� ���'���'�������'�����.’ [My italics.] In turn, this
behaviour requires Microsoft’s �������() implementation to loop and retry if it receives an ��� .
This is poor design twice over: without the spurious ��� , the condition would have been handled
automatically by the ��� stack. It also presents an interoperability problem: if the server uses a
Microsoft implementation but the client does not, obviously spurious connection errors will occur
at the client.

Stevens, ���%����	��������������(Volume I p. 98 states that ‘Posix.1g allows either behav-
iour: ignoring the new �0� or responding to [it] with an ��� ’, but I’ve been unable to track down
any actual reference to this. Posix 1003.1 specifies that �������() may fail with an ����� value of
���������� , but it doesn’t say anything about the permitted behaviour ���'�������� when the
listen backlog is exceeded; in fact Posix doesn’t explicitly mention �0� or ��� at all. One of the
more amazing things about the ��� # 	� protocol and the Berkeley sockets ��	 is that no formal
document appears to exist which connects them together, i.e. which specifies which protocol ele-
ments are issued and received by which �� 	 s under which circumstances.

30 ���
���������	������������

These methods return ���� if the socket is not yet bound, as described
in section 3.3.1 and section 3.3.7.6 This condition was not possible prior to "��
1.4, because an unbound ��� �����"�� could not be constructed un til the default
constructor was added in 1.4.

8,8,4 #��������'�������

����

Before binding the server socket as described in section 3.3.7, you may wish to set
the ‘reuse local address’ option. This really means reusing the local port.

The reuse-address methods were added in "�� 1.4:

class ServerSocket
{
void setReuseAddress(boolean reuse)

throws SocketException;
boolean getReuseAddress() throws SocketException;

}

This setting is useful in development where servers are stopped and started
frequently. By default, ��� prevents reuse of a listening port when there is an
active or, more typically, a closing connection to the port. Closing connections
persist for two minutes or so, for protocol integrity reasons. In development situ-
ations, the two-minute wait can be wasteful and annoying. Setting this option
stops the waste and abates the annoyance.

The behaviour when changing this setting after a server socket is bound, or
constructed with a non-default constructor, is undefined.

Note that these methods set and get a boolean state, not some sort of ‘reuse-address’ as
their names may suggest.

The default value of this setting is not defined by Java, but in MacOS/X, according to
����6,,�����!����!���,���� ��,� <�� ,7���,���,��
��8=�!����, it is ����. For all
other systems I have ever encountered it is ����.

8,8,: ���������'�������������������B�

Before binding the server socket as described in section 3.3.7, you may wish to set
the receive buffer size. You ���� do this before binding if you want to achieve
maximum throughput by using a huge receive buffer (larger than 64KB),
because a large receive buffer is useful only if the sending end knows about it,
and the receiving end can only advertise buffer sizes greater than 64KB if it ena-

6. ��� �����"��!
��#���$������ was incorrectly documented in all "�� versions prior to 1.4.1 as
returning ‘���� if the socket is not yet connected’. ��� �����"�� objects are never connected.

���
����������t cp 31

bles window scaling
�������'���������������>�����, which can first occur immedi-
ately the socket is bound, i.e. before returning from ��� �����"��!�����.

Therefore you must set the receive buffer size for a server socket before bind-
ing it. Sockets returned by ��� �����"��!����� inherit this setting (as indeed all
socket option settings).

You �� set a huge receive buffer size on the server socket after it is bound or con-
structed with a non-default constructor, but it won’t have the desired effect on any con-
nections already accepted. You can also set it on an accepted socket, but again this will
be ineffective.

Setting a huge ���
 buffer size on the accepted socket
��� have the desired effect,
because large send buffers are not advertised to the other end. Hence, no
��� �����"��!�������>�������?� method is required or provided.

The receive-buffer size is set and interrogated by the methods:

class ServerSocket
{
void setReceiveBufferSize(int size)

throws SocketException;
int getReceiveBufferSize() throws SocketException;

}

See section 3.13 for further discussion of socket buffer sizes.

8,8,; "��
��!������

A ��� �����"�� resulting from the default constructor introduced in "�� 1.4
must be ‘bound’ before connections can be accepted. This is done by using one of
the "�� 1.4 methods:

class ServerSocket
{
void bind(SocketAddress address) throws IOException;
void bind(SocketAddress address, int backlog)

throws IOException;
boolean isBound();

}

where ������ is usually an #������"��$������ constructed with a port number
as described in section 3.3.2 and a ����$������ as described in section 3.3.4, and
��"��
 is as described in section 3.3.3.

After a ��� �����"�� has been closed it cannot be reused, so it cannot be bound
again.

32 ���
���������	������������

The ��� �����"��!���� method incorporates the functions of both ���
() and ������() in
the Berkeley Sockets API.

�.� :�����
	�	�	��	���	�����	����

8,9,7 ������������

Client sockets are created with one of the constructors:

class Socket
{
Socket(InetAddress host, int port)

throws IOException;
Socket(String host, int port) throws IOException;
Socket(InetAddress host, int port,

InetAddress localAddress, int localPort)
throws IOException;

Socket(String host, int port,
InetAddress localAddress, int localPort)

throws IOException;
Socket() throws IOException;
Socket(Proxy proxy) throws IOException;

}

The first four of these create sockets which are already connected to the specified
target. A connected socket is ready for use—for I/O operations.

The default constructor introduced in "�� 1.4 creates a socket in an ‘uncon-
nected’ state. An unconnected socket must be connected to a target with the
���"��!������� method described in section 3.4.10 before it can be used for any
I/O operations.

The last constructor listed above, introduced in "�� 1.5, connects a socket to a
local proxy server: after constructing such a socket you must call ���"��!�������
to connect it via the proxy server to the real target.

8,9,2 #������'���

The ���� parameter specifies the remote host to be connected to. It can be speci-
fied as either an #���$������ or a �����
.

An #���$������ can be constructed by calling either #���$������!
��>)&��
or #���$������!
��>)$������. A host as a �����
 may contain either a host name
such as @� !���!���A, which is resolved using a naming service such as ��� ,
or a textual representation of its 	� address. For textual representations, only the
validity of the address format is checked. For 	��� this is the well-known ‘dotted-
quad’ format, �,�, “192.168.1.24”. For 	��� , literal addresses are accepted in any

���
����������t cp 33

of the the �-� 2372 literal 	��� address formats, �,�, “1080::8:800:200C:417A”
or “::192.168.1.24”.

The remote host can be obtained by the method:

class Socket
{
InetAddress getInetAddress();

}

which returns ���� if the socket is not connected. The remote address can also be
obtained via the following "�� 1.4 code sequence:

SocketAddress sa = socket.getRemoteSocketAddress();
if (sa != null)
return ((InetSocketAddress)sa).getAddress();

return null;

8,9,8 #������!���

The !��� parameter specifies the remote port to be connected to, i.e. the port at
which the server is listening, described in section 3.3.2.

The remote port can be obtained via the method:

class Socket
{
int getPort():

}

which returns zero if the socket is not connected. The remote port can also be
obtained via the following "�� 1.4 code sequence, which also returns zero if the
socket is not connected:

SocketAddress sa = socket.getRemoteSocketAddress();
if (sa != null)
return ((InetSocketAddress)sa).getPort();

return 0;

8,9,9 A����

����

The ����$������ parameter specifies the local 	� address via which the connec-
tion is formed. If omitted or null it is chosen by the system. There is little point in
specifying the local 	� address for a ��� client: it is rarely done, and then only in
multi-homed hosts. It might be done to force the connection to go via a network
interface known to be faster than the others, or to predetermine the 	� routing
for some reason.

34 ���
���������	������������

The local 	� address to which a socket is bound can be obtained by the method:

class Socket
{
InetAddress getLocalAddress();

}

which returns ���� if the socket is not connected. Either way, it is of little practical
use to ��� clients. The local address can also be obtained via the following "��
1.4 code sequence:

SocketAddress sa = socket.getLocalSocketAddress();
if (sa != null)
return ((InetSocketAddress)sa).getAddress();

return null;

These methods also work on an accepted socket in a server. The result can be of
use to ��� servers in multi-homed hosts. See the discussion of multi-homing
in section 3.14.

8,9,4 A����!���

�he ����:��� parameter specifies the local port to which the socket is bound. If
omitted or zero it is allocated by the system. There is little point in specifying the
local port for a ��� client, and the operation is rarely employed.

The local port number to which a socket is bound can be obtained by the
method:

class Socket
{
int getLocalPort();

}

which returns zero if the socket is not connected. The port number can also be
obtained via the following "�� 1.4 code sequence, which also returns zero if the
socket is not connected:

SocketAddress sa = socket.getLocalSocketAddress();
if (sa != null)
return ((InetSocketAddress)sa).getPort();

return 0;

This information is of little practical use to ��� clients. These methods also work
on an accepted socket in a server, although the result is always the same as the
port the server is listening to, as discussed in section 3.3.2.

���
����������t cp 35

8,9,: ���%)���*���

The :���) object specifies the type (�����������"���B;;:) of the proxy and its
���"��$������.

8,9,; ���������'�������������������B�

Before connecting the socket as described in section 3.4.10, you may wish to set
the receive buffer size. The receive buffer size is set and interrogated by the
methods:

class Socket
{
void setReceiveBufferSize(int size)

throws SocketException;
int getReceiveBufferSize()

throws SocketException;
}

You must set the receive buffer size before connecting if you want to use a huge
(≥ 64�,) receive buffer and you want maximum throughput. You can still set a
huge receive buffer size after the socket is connected, but it won’t have all the
desired effects, as discussed in section 3.3.6. As also discussed in section 3.3.6,
setting a huge ���
 buffer size on the connected socket
��� have the desired
effect, because large send buffers don’t need to be advertised to the other end.
Hence, you can set the send-buffer size at any time before the socket is closed.

See section 3.13 for further discussion of socket buffer sizes.

8,9,C "��
��!������

A ���"�� resulting from the default constructor introduced in "�� 1.4 can be
‘bound’ before it is connected. This is equivalent to specifying one or both of
����$������ and ����:��� in the constructors described in section 3.4.1. This is
done by the "�� 1.4 method:

class Socket
{
void bind(SocketAddress address) throws IOException;
boolean isBound();

}

where ������ is constructed with a ����$������ as described in section 3.4.4
and a port number as described in section 3.4.5.

The ���"��!���� method is equivalent to ���
() in the Berkeley Sockets API.

36 ���
���������	������������

As discussed in section 3.4.4 and section 3.4.5, there is little point in this opera-
tion and it is rarely employed.

8,9,D #��������'�������

����

Before binding the socket as described in section 3.4.8, you may wish to set the
‘reuse local address’ option. This really means reusing the local port.

The reuse-address methods were added in "�� 1.4:

class Socket
{
void setReuseAddress(boolean reuse)

throws SocketException;
boolean getReuseAddress() throws SocketException;

}

Like the bind operation itself for client sockets, this operation is almost entirely
pointless and is rarely if ever employed.

Note that these methods set and get a boolean state, not some sort of ‘reuse-address’ as
their names may suggest.

8,9,73 ���������!������

A ���"�� resulting from the default constructor introduced in "�� 1.4 or the
:���) constructor introduced in "�� 1.5 must be connected before it can be used
for I/O. This is done by one of the "�� 1.4 methods:

class Socket
{
void connect(SocketAddress address)

throws IOException;
void connect(SocketAddress address, int timeout)

throws IOException;
boolean isConnected();

}

where ������ is usually an #������"��$������ constructed with a ������B��� as
described in section 3.4.2 and a ������:��� as described in section 3.4.3, and
������� specifies the connect timeout in milliseconds: if zero or omitted, an infi-
nite timeout is used: the operation blocks until the connection is established or
an error occurs.

The ������� method can wait up to ������� milliseconds before failing, but it
can fail much more quickly. (If the host is there and the port isn’t listening, the
host can generate a ���
 ��� immediately.) Normally, the timeout period will

���
����������t cp 37

only be exhausted if the server’s backlog queue (described in section 3.3.3) is
full.7

The ����������� method tells whether the ���� socket has been connected yet.
This method does ��� tell you whether the ��'�� end has closed the connection.

Nobody can. Disconnection by the remote end can only be detected in ��� by attempt-
ing to read from or write to the socket. If a read incurs an ��- indication (a return value
of -1) or an 	+C	��������, the other end has definitely closed the connection. However,
if the read succeeds, you still can’t be sure: the other end may have been closed, but
there may have been sufficient data buffered locally or in transit to satisfy the read
request. Similarly, if a write throws a ���"��	��������, the other end has definitely
either closed the connection or disappeared entirely. However you may have to write
quite a lot of data before getting this exception.

A ���"�� cannot be closed and then re-connected.

�. +�����	��
��	���
�������	���

Once a server socket is constructed and bound, client connections are accepted
with the method:

class ServerSocket
{
Socket accept() throws IOException;

}

This method returns a connected ���"�� ready for I/O. The connected socket
inherits many of its settings from the server socket, specifically including its local
port number, the size of its send and receive buffers, its blocking/non-blocking
state, but specifically �%���
��� its read timeout.8

Another setting that is not inherited is the local address. The value returned by
���"��!
������$������ or ���"��!
���������"��$������ is the address which
the client used to connect to the server. This is important in multi-homed hosts:
see section 3.14.

To be specific, the local address of the accepted socket is not necessarily the address to
which the server is listening, which is usually the wildcard address. Nor is it necessarily
the address of the interface via which the connection was received. The ‘weak end sys-

7. It appears from some reports that on Windows platforms the ������� parameter can only be
used to ��
��� the default timeout.
8. This exclusion is a deliberate variation from the Berkeley Sockets �� 	 , where �� the listening
socket’s attributes are inherited except the passive/active attribute.

38 ���
���������	������������

tem model’ described in �-� 1122 allows an 	� packet to be received in a multi-homed
host via an interface other than that to which it was addressed. If this happens, the
address the client used is more useful to the server than the local interface via which the
connection was received, and the former is what is returned.

Servers need to be constructed so as to loop calling ��� �����"��!����� as fre-
quently as possible, so as not to stall connecting clients. Various architectures for
this are possible. The accepted socket is normally passed to another thread for
processing while the accepting thread loops again, as shown in the simplest usa-
ble architecture of Example 3.3. More advanced server architectures are dis-
cussed in Chapter 12.

This loop should be coded so that it cannot stall anywhere but in
��� �����"��!�����. This normally rules out doing any I/O between the accept
and the despatch to another thread, however the latter is managed. This has ram-
ifications for the design of the application protocol: it should not be necessary to
read anything from the client before despatching the connection to its own
thread.

�.� :�����
�#$

8,:,7 ���!��

In Java, output to a socket is done via an +���������� obtained from the socket
via ���"��!
��+����������, as shown below, or via the high-performance socket
channels discussed in Chapter 5. This section discusses output streams.

Socket socket; // initialization not shown
OutputStream out = socket.getOutputStream();
byte[] buffer = new byte[8192];
int offset = 0;
int count = buffer.length;
out.write(buffer,offset,count);

All output operations on a ��� socket are synchronous as far as the local send
buffer is concerned, and asynchronous as far as network and the remote applica-
tion are concerned. All that a ��� output operation does is buffer the data locally
to be sent according to the timing and pacing rules of ��� . If the local socket
sending buffer is full, a write to a socket normally9 stalls until space in the send-
ing buffer is released as a result of acknowledgements received for previous
transmissions. As soon as enough local buffer space is available, control is
returned to the application. If buffer space is available for part of the data, that

9. �,�, unless you are using non-blocking I/O, discussed in Chapter 5.

���
����������t cp 39

part of it is buffered and the application stalls until further space appears; this
continues until all the data has been written to the buffer. Obviously this means
that if the amount of data to be written exceeds the send-buffer size, the initial
excess will have been written to the network, and only the final non-excess part of
the data will be buffered locally, when the write method returns.

This means, in the output example above, that when ���!'���� returns, all
����� bytes have been written to the local sending buffer.

This is a point of difference between Java and other socket implementations such as
Berkeley Sockets or 	����� . In Java stream I/O, the write method blocks until all
data has been processed. Other blocking-mode socket-write implementations return a
count which is at least 1 but possibly less than the sending count: the only assurance is
that some data has been buffered.

After writing to a socket, there is no assurance that the data has been received by
the application (or ���) at the other end. The only way an application can be
assured that a data transmission has arrived at the remote application is by
receiving an acknowledgement �%!������)����� by the remote application. Normally
such an acknowledgement is built-in to the inter-application protocol and is
delivered over ��� . In other words most ��� conversations follow a request-
reply model.

There isn’t even much assurance that data written to a socket has been sent out to the
network; nor is there any assurance that !���� write operations have been received or
sent out. You can compute how much data has definitely been sent to the network by
subtracting the send-buffer size from the total number of bytes written, but this still
doesn’t tell you whether it’s been received, so it’s really pretty pointless.

It is best to attach a >�������+���������� to the output stream obtained from
the socket. Ideally the >�������+����������’s buffer should be as large as the
maximum request or response to be transmitted, if this is knowable in advance
and not unreasonably large; otherwise it should be at least as large as the socket’s
send-buffer. This minimises context-switches into the kernel, and it gives ���
more data to write at once, allowing it to form larger segments and use the net-
work more efficiently. It also minimizes switching back and forth between the
" �� and "�	 . You must flush the buffer at appropriate points, �,�, after complet-
ing the writing of a request message and before reading the reply, to ensure that
any data in the >�������+����������’s buffer gets to the socket.

To send Java data types, use a ��+���������� attached either directly to the
socket output stream or, better, to a >�������+���������� as shown above:

DataOutput dos = new DataOutputStream(out);
// examples …
dos.writeBoolean(…);
dos.writeByte(…);

40 ���
���������	������������

dos.writeChar(…);
dos.writeDouble(…);
dos.writeFloat(…);
dos.writeLong(…);
dos.writeShort(…);
dos.writeUTF(…);// write a String

To send serializable Java objects, wrap an +�����+���������� around your
output stream:

ObjectOutput oos = new ObjectOutputStream(out);
// example …
Object object;// initialization not shown
oos.writeObject(object);

As +�����+���������� extends ��+����������, you can also use the data
type methods shown above. However be aware that +�����+���������� adds its
own protocol to the data stream, so you can only use it for output if you use an
+�����#��������� at the other end. You can’t write data types with an
+�����+���������� and read them with a ��#���������.

As suggested above for ��+����������, you should use a
>�������+���������� in conjunction with an +�����+����������.

8,:,2 ��*����������
�
����

Beware of an deadlock problem with object input and output streams. The fol-
lowing code fragment will always deadlock if present at both client and server:

ObjectInputStream in
= new ObjectInputStream(socket.getInputStream());

ObjectOutputStream out
= new ObjectOutputStream(socket.getOutputStream());

The reason is that the +�����#��������� at one end is trying to read the object
stream header written by the +�����+���������� at the other end, as part of
their initialization, while the other end is trying to do the same thing in reverse.
Always create an +�����+���������� ������ an +�����#��������� for the same
socket.10

10. For completeness I should mention that this strategy still has a slight theoretical risk of
deadlock. This can only arise if all the relevant socket buffers are smaller than the object stream
header: in practice this is never true as socket buffers are at least 8k and the object stream header
is only a few bytes. To overcome this theoretical risk, construct and flush the +�����+����������

before the +�����#��������� at one end and ��������� at the other end..

���
����������t cp 41

8,:,8 ��!��

Similarly, input from a socket is done via an input stream obtained from the
socket via ���"��!
��#���������, as shown below, or via the high-performance
socket channels discussed in Chapter 5. This section discusses input streams.

Socket socket;// initialization not shown
InputStream in = socket.getInputStream();
byte[] buffer = new byte[8192];
int offset = 0;
int size = buffer.length;
int count = in.read(buffer,offset,size);

An input operation on a ��� socket blocks until at least some data has been
received.11 However, �'�������'����
���������
��)����������'���'�������'����
�
��>�����
. If some data had ���
) been received into the socket receive buffer,
the input operation will probably return just that data. If the receive buffer is
empty, input blocks until some data has been received, probably a single ���
segment, and will probably return just �'� data. In other words, ����� may be
less than ��?� in the input example above.

This behaviour is reflected in the ��� methods inherited from #��������� of
the socket input stream itself, and of the read methods in any interposed I/O
stream, �,�, >�������#���������, ��#���������, +�����#���������, or
:�����"#���������.

However, the ��#����!���C���) method loops internally until the data
requested is completely read, or until ��- or an exception occurs, whichever
occurs first. The ���C���) method is called internally by the read methods inher-
ited from D����, the data type methods of ��#��������� (���>�����,
������, ���������, ���C���, ���#��, ������
, ��������, and ���E;C),
and by +�����#���������!���+�����, so these methods also either read the full
amount of data required or throw an exception.

A count of -1 is received if and only if the other end has closed the socket or
shutdown its output—see section 3.7.12

The #���������! ����� method of a socket input stream returns the count
of data currently in the socket receive buffer. This may be zero. That’s all it does.
It does ��� foretell the future: that is, it doesn’t engage in some network protocol
operation to ask the other end how much is currently in flight (�,�, how much it
has already sent), or how much was sent in the last '���� method, or how big the
next message is, or how much it is going to send altogether (�,�, how much data is
in a file being sent). There isn’t any such protocol in ��� so it can’t.

11. Unless you are using non-blocking I/O, discussed in Chapter 5.
12. This is a minor trap for Berkeley Sockets and 	����� programmers, who are used to ��-

being a return value of zero and -1 indicating an error.

42 ���
���������	������������

It is best to attach a >�������#��������� to the input stream obtained from the
socket. This minimises context switches into the kernel, and drains the socket
receive buffer more quickly, which in turn reduces stalling at the sender. It also
minimizes switching back and forth between the " �� and "�	 . Ideally the
>�������#���������’s buffer should be at least as large as the socket’s receive
buffer so that the receive buffer is drained as quickly as possible:

Socket socket;// initialization not shown
InputStream in = socket.getInputStream();
in = new BufferedInputStream
(in, socket.getReceiveBufferSize());

To receive Java data types, use a ��#��������� attached either directly to the
socket input stream or, better, to a >�������#��������� (as shown above):

DataInputdis = new DataInputStream(in);
// examples …
booleanbl = dis.readBoolean();
byte b = dis.readByte();
char c = dis.readChar();
double d = dis.readInt();
float f = dis.readInt();
long l = dis.readInt();
short s = dis.readInt();
String str = dis.readUTF();

To receive serializable Java objects, wrap an +�����#��������� around your
input stream:

ObjectInput ois = new ObjectInputStream(in);
// example …
Object object = ois.readObject();

As +�����#��������� extends ��#���������, you can also use the data type
methods shown above. However be aware that +�����#��������� assumes that
the +�����+���������� protocol is present in the data stream, so you can only
use it for input if you use an +�����+���������� at the other end. You can’t
write data types with an ��+���������� and read them with a
+�����#���������.

See also the object stream deadlock problem discussed in section 3.6.2.

8,:,9 �'��������

Channel I/O was introduced in "�� 1.4, providing high-performance, scalable
I/O via files and sockets. It is discussed in detail in Chapter 5.

���
����������t cp 43

�.! ����	���	��

The simplest way to terminate a connection is to close the socket, which termi-
nates the connection in both directions and releases the platform’s socket
resources.

Before closing a socket, the ��� ‘shutdown’ facility provides a means of termi-
nating socket for input and output independently, as discussed in section 3.7.1
and section 3.7.2.

Connected sockets must be closed by both parties to the conversation when the
conversation is complete, as discussed in section 3.7.4.

When the service provided by the server is being terminated, the listening
socket must be closed as discussed in section 3.7.4. This can be done while con-
versations with accepted sockets are in progress without disturbing those conver-
sations.

8,;,7 ���!����'��
�	��5'��$�����6

Output shutdown is also known as a ‘half-close’. It is accomplished with the
method:

class Socket
{
void shutdownOutput() throws IOException;
boolean isOutputShutdown();

}

Output shutdown has the following effects:

(a) Locally, the local socket and its input stream behave normally for reading
purposes, but for writing purposes the socket and its output stream behave
as though the socket had been closed by this end: subsequent writes to the
socket will throw an #+	��������!

(b) ��� ’s normal connection-termination sequence (a - 	� acknowledged by
an ���) is queued to be sent after any pending data has been sent and ac-
knowledged.

(c) Remotely, the remote socket behaves normally for writing purposes, but for
reading purposes the socket behaves as though it had been closed by this
end: further reads from the socket return an EOF condition, i.e. a read count
of -1 or an 	+C	��������, depending on the method being called.

(d) When the local socket is finally closed, the connection-termination se-
quence has already been sent, and is not repeated; if the other end has al-
ready done a half-close as well, all protocol exchanges on the socket are now
complete.

44 ���
���������	������������

This method is widely used in advanced network programming. It is extremely
useful to be able to send an ��- to the other end while still being able to read the
socket. Consider the case of a socket-copying program such as a proxy server,
which simply copies all its input to its output in both directions; it needs to be
able to transmit a received EOF from one side to the other, but it can’t assume
that the end to which it transmitted the EOF has finished sending data in the
other direction, so it can’t just transmit the EOF by closing the socket: it needs to
shutdown its output.

It is also sometimes useful to initiate the connection-termination sequence
early, so that the socket won’t persist as long as it would otherwise after the socket
is closed. For example, a client which writes a single request to a socket could
shut the socket down for output immediately after writing the request, even
before the reply is received, thus overlapping part of the connection-termination
sequence with the computation and transmission of the reply. Similarly, a server
processing single-shot transactions could shutdown its socket for output imme-
diately after writing the reply.

See the discussion of ‘linger’ in section 3.16 for an explanation of socket persistence
after closing, and for other ways to control the asynchronous nature of a socket close.

Output shutdown can also be used to semi-synchronize client and server before
closing, in circumstances where this is important. Before closing, both ends do
an output shutdown and then a blocking read expecting an EOF.13 When the EOF
is received, that end is assured that the other end has done the output shutdown.
Whichever end did the output shutdown first will block in the read for the other
end to do its shutdown. This is shown in the sequence diagram of Figure 3.3.

The ��- indication from the blocking read is received more or less simultane-
ously at both ends, give or take a round trip, which is close enough for many
purposes. By contrast, ���"��!����� is completely asynchronous by default.14

When using this technique, the end which arrives at the shutdown/read sequence ���$
��
 will find an EOF already waiting for it and will therefore exit the sequence ����� by
roughly a one-way-trip time; this can increase if network errors occur. It is not a precise
science.

The shutdown methods were introduced in "�� 1.3. Note that the ����� methods of
socket input and output streams do ��� perform read or write shutdowns: they really
close the socket, with ���"��!�����.

13. Anything else received constitutes an error in the application protocol: data sent but not
received. The technique provides an opportunity to debug this as well.
14. This can be modified with the ‘linger on close’ option discussed in section 3.16.

���
����������t cp 45

This technique can also be used by one end, if it is known that the other end just
closes the socket when it reads an ��- : the first end does a shutdown for output
and then reads until it receives an ��- itself; at this point it knows that the other
end has both read all the sent data and stopped reading.

The ��+�����������'� method tells whether the ���� socket has been shut-
down for output: it doesn’t tell anything about what may have happened at the
other end of the connection.

8,;,2 ��!����'��
�	�

Input shutdown is accomplished with the method:

class Socket
{
void shutdownInput() throws IOException;
boolean isInputShutdown();

}

When a socket has been shutdown for input, the behaviour at the local end is as
follows: the socket and its output stream behave normally for writing purposes,
but for reading purposes the socket and its input stream behave as though the
socket had been closed by the other end: subsequent reads on the socket return

9	����
�.�. Synchronizing two peers with output shutdowns and reads

��� blocks

Shuts down
output

FIN

FIN

ACK

ACK
��� re-

ceives ��-

Peer 1 Peer 2

��� receives
��- without
blocking

shuts down
output

46 ���
���������	������������

the ��- condition—i.e. a read count of -1 or an 	+C	��������, depending on the
method being called.

Notwithstanding the current "�� documentation, the behaviour of the con-
nection as perceived by the remote end varies depending on the platform at the
local end:

(a) In ,�� -based platforms, any pending or further data sent to the socket are
acknowledged (at the ��� protocol level) and silently discarded. This is the
behaviour described in the "�� documentation. It causes the connection to
behave normally for writing at the remote end. The acknowledgement and
discarding occur inside the local protocol stack. There is no outward proto-
col associated with a read shutdown. The input shutdown is completely un-
detectable by ��� at the remote end: it is only detectable in terms of the
application protocol (the application does not respond to requests).

(b) In 	����� platforms, any pending or further data sent to the socket
cause the connection to be reset, eventually causing a ���"��	�������� with
the text ‘Connection reset’ at the sender.

(The 	����� specification is self-contradictory on this point: shutdown
for input ‘has no effect on the lower protocol layers’, but ‘for ��� sockets, if
there is still data queued on the socket waiting to be received, or data arrives
subsequently, the connection is reset’. The latter describes Microsoft’s im-
plementation. 	����� 1.1 specifies a different behaviour again: ‘the ���
window is not changed and incoming data will be accepted (but not ac-
knowledged) until the window is exhausted’, �,�, the local buffer and the
senders’ buffer will fill, and the sender will eventually stall. Neither behav-
iour is noted in the relevant 	����� specification as a departure from the
,�� semantics, and the 2.2.2 behaviour was not noted as a change from 1.1.
The 	����� behaviour also appears to violate �-� 793 §3.4, #����������$
����, as cited in footnote (5) above.15)

(c) In Linux platforms, the read shutdown is completely ignored at the protocol
stack level,16 although not at the socket level, where the socket receive buffer
continues to accept data until it fills, at which point further sends to the
socket ultimately stall (or return zero in non-blocking mode), because the
sender perceives the lack of buffer space at the receiver. This behaviour is
broken.17

15. 	����� 2.2.2 specification, 7 August 1997; 	����� 1.1 specification, 10 January 1993.
16. This does not affect the read behaviour at the local end, which always returns ��- after a read
shutdown regardless of the underlying behaviour of the platform, because it is implemented at the
Java level.
17. My tests were run on RedHat 7.2 kernel 2.4.13.

���
����������t cp 47

The input-shutdown technique is little used, and these major semantic varia-
tions don’t exactly help. Behaviour (a), if you can rely on it, can be handy: the
other end can keep sending data without it piling up at the receiver, like ignoring
the club bore without hurting his feelings, and while also allowing the local end
to keep sending data. A server which only processes one request per connection
and which doesn’t need to read the entire request for any reason might do this.
Behaviour (b) on the other hand allows the other end to detect the input shut-
down, belatedly and fatally, by losing the connection. This seems fairly useless:
you might as well just close the connection.

The ��#����������'� method tells whether the ���� socket has been shut-
down for input: it doesn’t tell anything about the other end of the connection.

8,;,8 �����������������
�������

Once the conversation is complete, the socket must be closed. In Java this is usu-
ally done via the method:

class Socket
{
void close() throws IOException;
boolean isClosed();

}

In fact there are several ways to accomplish this:

(a) close the socket itself with ���"��!�����-3;

(b) close the output stream obtained from the socket by calling the method
���"��!
��+����������-3!�����-3

(c) close the input stream obtained from the socket by calling the method
���"��!
��#���������-3!�����-3;

Any one of these is sufficient, and exactly one of them is necessary, to close the
socket and release all its resources. You can’t use more than one of these tech-
niques on any given socket. As a general rule you should close the output stream
rather than the input stream or the socket, as the output stream may require
flushing.

Closing a socket is an output operation, and, like the output operations dis-
cussed above, it normally occurs asynchronously (but see §3.13): there is no assur-
ance that the other end has received the close, nor, again, that it has received the
data from prior output operations. Both the server and the client must close the
socket.

If ���"��!����� throws an #+	��������, it may mean that you have already
closed the socket, �,�, in another of the above ways. It may also mean that ��� has
already detected that it was unable to send previously buffered data. As discussed

48 ���
���������	������������

above, your application protocol is the only means available of detecting this
problem synchronously.

An #+	�������� in ���"��!����� does ��� mean that the other end has already closed its
end of the connection. The other end may have closed its end of the connection, but this
is a normal condition, and the ��� protocol design explicitly caters for it. Both sides
must close, and somebody has to be first. Closing a socket which the other end has
already closed does ��� throw an #+	��������.

The �������� method tells whether the ���� socket has been closed. It doesn’t tell
anything about the other end of the connection.

8,;,9 �'�������
�	���tc p �������

The server should normally have some mechanism for being shut down. Often
this is done via a protocol command sent over an accepted connection; it can also
be done via a command-line or graphical user interface.

Shutting down a ��� server requires closing the listening socket. In Java this
means calling the method:

class ServerSocket
{
void close() throws IOException;
boolean isClosed();

}

Any concurrent or subsequent executions of ��� �����"��!����� on that socket
will throw a ���"��	��������. However any existing accepted sockets are not
affected by closing the ��� �����"�� from which they were accepted.

The message text of the exception thrown by ��� �����"��!����� is ‘Socket Closed’ in
"�� 1.4.1, but this may vary with both the version and the implementation of Java.

The �������� method tells whether the ���� socket has been closed: it doesn’t tell
anything about the other end of the connection.

�.& :�����
-�����	��

In object-oriented design, �������� are objects (or classes) which create objects. A
������������) is a factory which creates sockets or server sockets, or both. Like all
object factories, socket factories centralize the object-creation process; hide its
implementation details from the rest of the system; and provide consistent
object-creation interfaces for which different implementations can be provided.

Java supports socket factories at three levels: � !��� socket factories, RMI
socket factories, and � �� socket factories. These are described separately below.

���
����������t cp 49

8,C,7 ������������������������

� !��� socket factories are used by Java to provide itself with socket implemen-
tations.

The � !���!���"�� and � !���!��� �����"�� classes are really facades. These
facade classes define the Java sockets ��	 ; but delegate all their actions to socket-
implementation objects which do all the real work.

Socket implementations extend the abstract � !���!���"��#��� class:

class SocketImpl
{
// …

}

The factory which supplies them implements the � !���!���"��#���C����)
interface:

interface SocketImplFactory
{
SocketImpl createSocketImpl();

}

A default socket factory is always installed, which delivers ���"��#��� objects
whose type is the package-protected class � !���!:������"��#���. This class
has native methods which interface with the local C-language sockets �� 	 , �,�,
the Berkeley Sockets �� 	 or 	����� .

The socket factory can be set:

class Socket
{
static void setSocketFactory(SocketImplFactory factory);

}

The ������"��C����) method can only be called once in the lifetime of a " �� . It
requires a D������:��������� ‘���C����)’ to be granted, otherwise a
�������)	�������� is thrown.

Applications have little or no use for this facility.

8,C,2 rmi ����������������

��	 socket factories are used by Java ��	 to supply sockets and server sockets
for ��	 when using the "��� protocol. Conceptually, this feature permits
��	 # "��� to be superimposed over other intermediate protocols such as � �� :
instead of the protocol stack "���#��� # 	� you could use the stack
"��� /� � � # ��� # 	� , or indeed interpose any protocol you like. You could also

50 ���
���������	������������

replace the ��� # 	� component of the stack, if you can supply ���"��� and
��� �����"��� which implement some other protocol, �,�, ��� .

In "�� 1.1 this facility consisted only of the D�#���"��C����) class:

class RMISocketFactory
{
abstract Socket createSocket

(String host, int port)
throws IOException;

abstract ServerSocket createServerSocket(int port)
throws IOException;

static RMISocketFactory getDefaultFactory();
static void setDefaultFactory

(RMISocketFactory factory);
}

Like the � !��� socket factory described above, the ���������C����) method
can only be called once in the lifetime of a " �� , and requires the runtime permis-
sion F���C����)G to be granted, otherwise a �������)	�������� is thrown.

However, as the server and client " ��s must set the ��	 socket factory inde-
pendently, and as ��	 clients may be applets running under control of a
browser’s security manager which prevents changing the socket factory, the fea-
ture as defined in "�� 1.1 was not much use.

In "�� 1.2, this feature was significantly extended by introducing the
D�#���������"��C����) and D�#��� �����"��C����) interfaces:

interface RMIClientSocketFactory
{
Socket createSocket(String host, int port)
throws IOException;

}

interface RMIServerSocketFactory
{
ServerSocket createServerSocket(int port)
throws IOException;

}

and introducing methods to associate client socket factories with remote objects
���'�����������
. Client socket factories must be serializable, as they are serialized
to clients when the stub for the remote object is acquired, and are used transpar-
ently by the client without its knowledge and without requiring any special runt-
ime permissions. This design ensures that each remote object is always commu-
nicated with via sockets created by the correct socket factory, and permits use of
multiple socket factories, �,�, in the limit, one socket factory per remote object.

���
����������t cp 51

��	 socket factories can be used to supply sockets which log socket connec-
tions and disconnections, or which enforce additional security, or which inter-
pose additional protocols as described above. The most common use of this facil-
ity is to interpose the � �� protocol as described above.

An ��	 server or client socket factory ���� override the +�����!�H���
method. The simplest such method for ��	 socket factories is of the form:

public boolean equals(Object that)
{
return that != null
&& that.getClass().equals(this.getClass());

}

8,C,8 s sl ����������������

The � �!��� factory classes ���"��C����) and ��� �����"��C����) are dis-
cussed in Chapter 7.

�.) ����	��	���
	�
���

If a Java security manager is installed, a � !���!���"��:��������� is required for
each socket operation.

Permissions are managed in a security policy file—a text file which by default
is named ‘� !�����)’, and is managed by the !����)���� program provided with
the "�� and "�� . The Java 2 security framework is described in the "�� ‘Guide
to Features/Security’ documentation, and I won’t discuss it further here.

A ���"��:��������� entry in the policy file has two fields: the ‘action’, �,�, the
network operation being attempted, and the ‘target’, �,�, the local or remote ���
endpoint to which the action refers, in the format:

host[:port]

where ���� is an exact or wildcard hostname or an 	� address, and ���� is a port
number or range. The action field and the meaning of the corresponding target
field for each ��� network operation are as shown in Table 3.1.

�.�* 45����	���
	�
���

The significant Java exceptions that can arise during blocking-mode ��� socket
operations, and their sources and causes, are shown in Table 3.2.

In this table, ‘C’ or ‘U’ indicates whether the exception is checked (C) or
unchecked (U).

52 ���
���������	������������

��,��
�.� ���"��:���������� in ���

���	� �����	
�	�

����� Required by the ��� �����"��!����� method. The target '��� specifies the
remote ��� endpoint being accepted.

������� Required by the non-default constructors for ���"�� and by its �������
method, and when obtaining #���$������ objects. The target '��� specifies
the remote ��� endpoint being connected to.

������ Required by the non-default constructors of ��� �����"��, and by its ����
method. The target '��� specify the ���� ��� socket, i.e. the local endpoint
to which the ��� �����"�� is being bound. The only reasonable value for '���
is ‘localhost’. The default policy file grants ‘listen’ permission to the target
“localhost:1024-”.

����� � This is implied by any of the ‘accept’, ‘connect’, or ‘listen’ permissions, so
there is little need to specify it explicitly.

��,��
�.� Exceptions in ���

����
�	� ����������������

� !���!
>���	��������

Thrown by constructors of ���"�� and
��� �����"��, and their ���� methods, if the
requested local address or port cannot be
assigned.

C

� !���!
�������	��������

Thrown by constructors of ���"�� and its
������� method on an error connecting to a
remote address and port, usually because the
connection is refused (nothing is listening at
the specified E

����(�!���F).

C

� !���!
�������	��������

This is thrown when an ��	 call fails to
connect to its target. Not to be confused with
� !���!�������	�������� above, although it
can cause this exception.

C

� !��
!
#���
�$�
�����	��������

Thrown by several methods of
#������"��$������, ���"��, and ��� �����"�� if
an argument is null or out of range.

U

� !���!�������!
#���
�>���"��
����	��������

Thrown by����"��!�������, operations on
���"�� input and output streams, and
��� �����"��!����� if the socket has an
associated channel which is in non-blocking
mode; from "�� 1.4.

C

� !��!
#����������#+	��������

Thrown by operations on ���"�� input streams
if a timeout has occurred; prior to "�� 1.4.

C

���
����������t cp 53

� !��!
#+	��������

Base I/O exception class. Derived exception
classes relevant to ��� include >���	��������,
�������	��������, 	+C	��������,
#����������#+	��������,
&�D����;�B���	��������, :�������	��������,
���"��	��������, and E�"��'�B���	��������.

C

� !���!
&�D����;�B���	��������

Thrown by non-default constructors of ���"��
and its ������� method, indicating that an
error has occurred while connecting to a
remote address and port, most usually if the
remote host cannot be reached because of an
intervening firewall, or if an intermediate
router is down.

C

� !���!
:�������	��������

Thrown by constructors and methods of ���"��
and ��� �����"��, and operations on ���"��
input and output streams, indicating that an
error occourred in the underlying protocol,
such as a ��� error.

C

� !��
!
�������)	��������

Thrown by several methods of ���"�� and
��� �����"�� if a required ���"��:��������� is
not granted as shown in Table 3.1.

U

� !���!
���"��	��������

Thrown by many ���"�� methods and
operations on ���"�� input streams indicating
that an underlying ��� error has occurred, or
the socket was closed by another thread other
than via #������������������!�����.

If the message contains the text ‘Connection
reset’, the other end of the connection has
issued a reset (���): the ���"�� is useless from
this point on, and it should be closed and
discarded.

Many exception classes are derived from this
one, including >���	�������� and
�������	��������.

C

��,��
�.� Exceptions in ��� (continued)

����
�	� ����������������

54 ���
���������	������������

�.�� :�����
���	���

Socket options control advanced features of ��� . In Java, socket options are con-
trolled via methods in � !���!���"�� or � !���!��� �����"��.

Socket options appear below more or less in order of their relative importance.

�.�� :�����
�	������

It cannot be assumed that an application can wait forever for a remote service,
nor that the service will always be rendered in a timely manner, nor that the serv-
ice or the intervening network infrastructure will only fail in detectable ways. In
fact, a ��� connection can fail in ways which cannot be detected by the server or
the client. Any network program which reads with infinite timeout is sooner or
later going to experience an infinite delay.

The ‘keep-alive’ feature described in section 3.17 provides a partial solution to
this problem, if the platform supports it. Java programs can run on any platform
and are not entitled to assume this. Even if the platform is known and does sup-
port keep-alive, the default delay is two hours before the dead connection is
detected, and this can only be altered system-wide by an administrator, if at all.
Usually this two-hour detection period is only palatable as a final fall-back.

For all these reasons, prudent network programming always uses a finite read
timeout. This is managed with the methods:

class Socket
{
void setSoTimeout(int timeout) throws SocketException:
int getSoTimeout() throws SocketException;

}

� !���!
���"��;������	��������

Thrown by operations on ���"�� input streams
indicating that a timeout has occurred; from
"�� 1.4; extends #����������#+	�������� for
backwards compatibility with pre-"�� 1.4
programs.

C

� !���!
E�"��'�B���	��������

Thrown by factory methods of #���$������,
and when using �����
 hostnames which are
implicitly resolved by those methods,
indicating that the 	 � address of the named
host cannot be determined from the naming
service.

C

��,��
�.� Exceptions in ��� (continued)

����
�	� ����������������

���
����������t cp 55

where ������� is specified in milliseconds, and must be either positive, indicat-
ing a finite timeout, or zero, indicating an infinite timeout. By default, the read
timeout is infinite.

If the timeout has been set to a positive (finite) value prior to a blocking read
operation on the socket, the read will block for up to the timeout period if data is
not available, and will then throw an #����������#+	��������. If the timeout is
infinite, the read will block forever, or until an error occurs.18

For clients which have just transmitted a request and are waiting for a reply,
the duration of the timeout should take account of the expected transmission
times in both directions plus the latency of the request—the execution delay at
the other end while the reply is being retrieved or computed. How long you
should wait in relation to this total expected time is a policy question: as a starting
point, the time-out might be set to twice the sum of the expected time. In general,
timeouts should be set slightly too long rather than slightly too short.19

Good networking programming practice requires that retries of transactions which
have timed out should occur at intervals which are initially random within a reasonable
interval, to avoid the ‘thundering herd’ problem, and which increase exponentially, to
reduce the network load which may have been part of the initial problem.

For servers which are waiting for a client request, the timeout value is strictly a
matter of policy: how long is the server prepared to wait for a request before aban-
doning the connection? The period chosen should be long enough to support
heavy network loads and a reasonable amount of client processing, but not so
long as to tie up precious server resources for absurd lengths of time. (The
resources allocated to a server connection consist of the connected socket itself
and, usually, a thread and some sort of client context.)

A timeout can also be set on a ��� �����"��:

class ServerSocket
{
void setSoTimeout(int timeout) throws SocketException;
int getSoTimeout() throws SocketException;

}

where this ������� is also specified in milliseconds as before. This setting deter-
mines how long an application will block in ��� �����"��!����� before getting
an #����������#+	��������. This setting is ��� inherited by accepted connections,
�,�, by sockets returned from ��� �����"��!�����.20 A ��� �����"�� timeout can

18. �,�, a keep-alive failure: see section 3.17.
19. See also Tanenbaum, ���!��������	����, 3rd edition, Prentice Hall, 1996, §6.6.7.
20. This is a deliberate variation from the behaviour of the Berkeley Sockets API and 	����� .

56 ���
���������	������������

be used to poll a number of ��� �����"��s in a single thread, although the
�������� class to be described in section 5.3.1 provides a better way to do this.

Setting a socket timeout has no effect on blocking socket operations already in
progress.

�.�� :�����
,�--���

��� allocates a send buffer and a receive buffer to each socket. These buffers
exist in the address space of the kernel or the ��� protocol stack (if different), not
in the " �� or process address space. The default size of these buffers is deter-
mined by the underlying platform’s implementation of ��� , not by Java. In the
original ��� implementation, the send and receive buffer sizes were both 2KB
by default. In some implementations they now often default to sizes more like
28KB, 32KB, or even 64KB, but you must examine your target system’s charac-
teristics for yourself.

8,78,7 ���'�
�

The size of a socket’s send and receive buffers is managed by these methods:

class Socket
{
void setReceiveBufferSize(int size)

throws SocketException;
int getReceiveBufferSize() throws SocketException;

void setSendBufferSize(int size) throws SocketException;
int getSendBufferSize() throws SocketException;

}

class ServerSocket
{
void setReceiveBufferSize(int size)

throws SocketException;
int getReceiveBufferSize() throws SocketException;

}

where ��?� is specified in bytes. Values supplied to these methods only act as a
hint to the underlying platform, and may be adjusted in either direction to fit into
the allowable range, or rounded up or down to appropriate boundaries.

You can set the send buffer size of a socket at any time before closing it. For
receive buffers, see the discussions in section 3.3.6 (servers) and section 3.4.7
(clients).

���
����������t cp 57

The values returned by the ‘get’ methods may not match the values you sent.
They also may not match the actual values being used by the underlying plat-
form.

8,78,2 G�	������'���
������������������@

Is 8KB, or 32KB, or 64KB, enough at today’s networking speeds?
The larger the buffer, the more efficiently ��� can operate. Large buffer sizes

utilize the capacity of the network more effectively: they reduce the number of
physical writes to the network; amortize the 40-byte space costs of the ��� and
	� packet headers over a larger packet size; allow more data to be in flight, ‘filling
the pipe’; and allow more data to be transmitted before stalling.

The folllowing principles should be followed.

(a) On an Ethernet, 4KB is definitely not enough: raising the buffers from 4KB
to 16KB has been seen to cause a 40% improvement in throughput.21

(b) Socket buffer sizes should always be at least three times the size of the max-
imum segment size (���) for the connection, which is usually determined
by the maximum transmission unit (���) of the network interface less 40
to account for the size of the ��� and 	� headers. With Ethernet, whose
��� is less than 1500, this presents no issue with buffer sizes of 8KB and
above, but other physical layers behave differently.22

(c) The send buffer size should be at least as big as the receive buffer at the
other end.23

(d) For applications which ���
 a lot of data at a time, increasing the size of the
send buffer to 48KB or 64KB may be the single most effective performance
improvement you can make to your application. For maximum perform-
ance in such applications, the send buffer should be at least as big as the
bandwidth-delay product of the intervening network (see below).

(e) For maximum performance in applications which ������� a lot of data at a
time (�,�, the other end of an application which sends a lot of data), the re-
ceive buffer at the receiver needs to be large as possible within the con-
straints above, because ��� limits the sender according to buffer space

21. Stevens Vol. I §20.4; Papadopolous, C., and Parulkar, G.M., ‘Experimental Evaluation of
SunOS PC and ��� # 	� Protocol Implementation’, �///� ���0����������������	������, Vol. 1,
no. 2, 1993.
22. Comer, D.E., and Lin, J.C., t cp �"����������
������������ �������a t m ����	���, Purdue
Technical Report CSD-TR 94-026, Purdue University, West Lafayette, Indiana,
���6,,
'��!��!������!���,���,���,;�:!��!��!I.
23. See Moldeklev & Gunningberg, G�	� � A���� a t m �m t u � ������ -�
������ ��� t c p � -�

0�������(��� #��� Transactions on Networking, Vol. 3, No. 4, August 1995.

58 ���
���������	������������

available at the receiver—a sender may not send data unless it knows there
is room at the receiver. If the receiving application is slow in reading data
from the buffer, its receive buffer size needs to be even larger, so as not to
stall the sender.

(f) For applications which send �
 receive a lot of data, increase both buffer
sizes.

(g) Defaults in most implementations are nowadays at least 8KB (�����),
28KB (OS/2), 52KB (Solaris). Early ��� implementations allowed a maxi-
mum buffer size of around 52,000 bytes. Some current implementations
support maximum sizes of 256,000,000 bytes or more.

(h) To use a receive buffer over 64K in a server, you must set the receive buffer
of the ��������� socket, which will be inherited by the accepted socket, as de-
scribed in section 3.3.6.

(i) Whatever the buffer size is, you should help ��� by writing in chunks of at
least that size, �,�, by using a >�������+���������� or a >)��>����� of at
least that size.

The maximum throughput of a single ��� connection is limited at any one time
to , where ? is the current receive ‘window’, whose maximum possi-
ble size is the receive buffer size, and ��� is the round-trip time over the connec-
tion for a packet and its acknowledgement. As you can't reduce ��� (it does tend
to be outside your control!), you have to increase the window size, and therefore
the receive buffer size, to compensate.

The optimum size of a send buffer depends on two factors: the bandwidth�or
data rate of the connection, and the ��� or delay time—the time for a packet to
make a round-trip between endpoints. The buffer needs to be large enough to
hold all data which has not yet been acknowledged, �,�, all data currently in flight,
in case any of it needs to be re-transmitted. Waiting for an acknowledgement
implies a round-trip. The buffer therefore needs to be as large as the nominal
‘capacity’ of the intervening network, given by:

�!���) (bits)�H���
	�
�' (bits/sec) ×�
��) (sec) <�=
�.�>

This quantity is referred to as the ‘bandwidth-delay product’. The bandwidth
used in this calculation is the effective bandwidth over the entire connection, not
just the bandwidth via which either endpoint is connected to the Internet, which
may be much higher.

The bandwidth-delay product can be understood by thinking of the network as
a cylindrical pipe as shown in Figure 3.4. The bandwidth of the network corre-
sponds to the cross-sectional area of the pipe, and the delay of the network corre-
sponds to the length of the pipe. A network can have high delay if it extends
across a slow gateway or router, or a large number of either: some physical-layer
technologies such as x(:? have inherently long delay. The bandwidth-delay

W RTT()⁄

���
����������t cp 59

product corresponds to the total volume of the pipe. As this volume consists of
data which has been sent but not acknowledged, the sender needs to buffer it all
locally so as to be able to re-send any or all of it if necessary. Using a buffer
smaller than the bandwidth-delay product means not ‘filling’ the network, �,�, not
using it to its maximum capacity. If you want maximum throughput, �,�, for a
large file or a streaming video transfer, use a large enough buffer. If you don’t
want to be so selfish, use a smaller buffer. Controlling the size of the socket buff-
ers in relation to the bandwidth-delay product provides a rough but effective
means, indeed the only means, of ‘choking’ the output of a socket.

�.�� 7���	%���	��

As we saw in section 2.2.5, a multi-homed host is a host which has more than one
	� address. Multi-homing has non-trivial consequences for ��� servers, and
trivial consequences for clients.

8,79,7 �����$'�����<�������

A ��� server normally listens at all local 	� addresses, and such a server need not
usually be concerned with the fact that it may be running in a multi-homed host.
The following are situations in which a ��� server may need to be aware of
multi-homing.

If the server is to service only one subnet, it should bind itself to the appropri-
ate local 	� address. This in turn may require use of the Server-
Socket.���D����$������ method discussed in section 3.3.5.

If the server supplies its own 	� address to clients, it must return an 	�
address which the client can access. Typically the client doesn’t have access to all
the 	� addresses of the server, but can only access it on one of them. If the client
has already connected to the server, the simplest way to assure that a returned 	�
address is usable is to force it to the address the client used to connect, given by
���"��!
������$������ for the accepted socket, as described in section 3.4.4.

9	����
�.�. Bandwidth-delay product

Delay

Bandwidth

60 ���
���������	������������

In directory services when registering service descriptors, the server must
advertise itself via an 	� address which all clients can access. The best way to
assure that advertised service addresses are most usable is to advertise the ‘most
public’ 	� address or hostname in each case.

8,79,2 �����$'�����<�������

A ��� client normally pays no attention to its local addresses, as we have seen in
section 3.4.8. If for some reason it really cares about which network interface it
uses to make connections, it should specify the local 	� address when doing so,
as discussed in section 3.4.4.

�.� �����@�
�����	���

Nagle’s algorithm was a minor modification to ��� adopted in 1984 (�-� 896).
It deters ��� from sending a sequence of small segments in circumstances
when the data is being injected slowly by the application. By default, Nagle’s algo-
rithm is enabled, but it can be disabled by setting an option known as the ‘no
delay’ option:

class Socket
{
void setTcpNoDelay(boolean noDelay)

throws SocketException;
boolean getTcpNoDelay() throws SocketException;

}

This can be confusing: remember that ���;��&����)-����3 turns Nagle’s algo-
rithm ���(and that its default state is ��.

Nagle’s algorithm operates simply by delaying the transmission of new ���
segments while any data remains unacknowledged, so that they can be coalesced
into a smaller number of larger segments. It turns out that this has other bene-
fits, such as preventing retransmissions to a dead host.

The original application of the algorithm was ‘single-character messages orig-
inating at a keyboard’, �,�, a Telnet session. Without Nagle’s algorithm, this
causes ��� to send each character in a separate segment, with one byte of data
and 40 bytes of header, �,�, an overhead of 4000%. While this is unimportant on
a lightly loaded ��� , it is a very inefficient use of a heavily loaded �� or portion
of the Internet; it can lead to premature saturation of the network; and it can be
extremely expensive on a network which charges per 	� packet.

There are very few situations in which you would want to turn this algorithm
off. The X Window System is one such situation, because small mouse move-
ments need to be transmitted more or less in ‘real time’ in order to keep the sys-
tem responsive to the user (Stevens tcp/ ip Vol. I §19.4). Java ��	 disables

���
����������t cp 61

Nagle’s algorithm, even though ��	 buffers all data and flushes it promptly
rather than writing little bits at a time to the network: presumably the intention is
to ensure that the final segment of a call or reply is transmitted promptly, and
that the small ��	 ‘ping’ message is not delayed.

In almost all situations where you may think you want to disable the Nagle
algorithm, the real answer is to use a >�������+���������� with a buffer size at
least equal to the largest request or reply size: set the socket send and receive
buffers to at least this size as discussed in section 3.13.2, and write the entire
request or reply out in one operation with the >�������+����������!�����
method. The entire buffer will be transmitted in a single ��� segment, which is
a much better use of the network than tranmitting the same data in many small
segments.

According to �-� 1122, implementations ‘should’ support Nagle’s algorithm,
but ‘must’ support an application interface to turn it off for an individual connec-
tion; this is what the ���"��!���;��&����) method is for when �����) is ����.
The �-� does ��� require an application interface to ��$����� the algorithm, �,�,
to set �����) to ���� in the Java ��	 . This means that the ���;��&����)
method may do nothing if the �����) argument is ����.

The ���"��!���;��&����) method is equivalent to setting the ;�:9&+�	�$J�option
via the Berkeley Sockets ��������!�56 ��	 .

In rare circumstances, mostly involving large ��� s, the combination of Nagle’s algo-
rithm and ��� ’s ‘delayed ��� ’ algorithm can cause ��� to get ����� ‘stuck’: specifi-
cally, to degrade to less than 1% of possible throughput. This can be avoided as long as
the socket send buffer is ���'�� at least as large as the receive buffer at the other end ��
larger than three MSS segments, as discussed in section 3.13.2.

�.�� ?	����
��
�����

The ���"��!��������
�� method controls the behaviour of ��� when a socket is
closed:

class Socket
{
void setSoLinger(boolean linger, int timeout)

throws SocketException;
int getSoLinger() throws SocketException;

}

where ������� is specified in seconds.24 A return value of -1 from the
�������
��
method indicates the default setting (���
�� 1 ����).

��� defines three different behaviours for ‘linger on close’, which are shown
in Table 3.3.

62 ���
���������	������������

24. Chan, Lee, & Kramer, 0'����������A�������, 2nd Edition, Volume 1, incorrectly specifies
milliseconds.

��,��
�.� ��� ‘linger’ settings

�	��� �	����� �����	
�	�

���� ignored Default. When the socket is closed,a the closing thread is not
blocked but the socket is not destroyed immediately: it first enters a
��+�#&* state while any remaining data is transmitted and the
- 	� -��� close protocol is exchanged with the other end; the
socket then enters the ;#�	<K$#; state, which lasts for twice the
maximum lifetime of a ��� segment, to ensure that further data
transmissions to the socket are rejected with a ��� ��� , the
interval being chosen so that ��� can retransmit the final part of
the close protocol if necessary, and so that the local and remote
endpoint pair which define the connection are not reused during
the ;#�	<K$#; period, so that any delayed data segments from the
closed connection won’t be delivered to the new connection. When
;#�	<K$#; expires the socket is destroyed.b

���� ≠ 0 ‘Linger’. When the socket is closed,a the closing thread is blocked
(‘lingers’) while any pending data is sent and the close protocol is
exchanged, or the timeout expires, whichever occurs first; the
thread then continues. If the timeout expires, either: 5�6 the
connection is ‘hard-closed’ as described below,c or 5��6 any
remaining data remains queued for delivery, after which the
connection is closed via - 	� -���
as described above.d These
semantics are platform-dependent (Java cannot overcome them).

In Java, ������� is an ��� specifying seconds, limiting it
to seconds; some platforms further limit it
to seconds, by using an internal 16-bit
signed quantity representing hundredths of a second.e

���� 0 ‘Hard close’. When the socket is closed,a any pending data is
discarded and the close protocol exchange (-	� -���) does not
occur: instead, an ��� is issued, causing the other end to throw a
���"��	�������� ‘connection reset by peer’.

a. �,�, via any of ���"��!�����, ���"��!
��LLL�����!�����, or ���"��!������'�+�����.

b. Many implementations unnecessarily prevent reuse of the local port during the ;#�	<K$#; pe-
riod as well, even when connecting to a different remote endpoint.

c. This behaviour is required by the 	����� 2 specification §3.4.

d. This behaviour was required by a Posix.1g draft (quoted in the comp.unix.bsd newsgroup by
W.R. Stevens, 22 May 1996), but not by 	 ��� Std 1003.1-2001, which leaves it undefined.

2
31

1–

2
15

1–() 100⁄ 32.767=

���
����������t cp 63

It is rarely if ever necessary to alter this option from its default setting, and
normally you should not do so. Some ��� implementations don’t support the
various non-default linger options; some ignore the timeout; and the behaviour if
the timeout expires is platform-dependent. You should avoid this feature for
these reasons alone.

Circumstances !!�� to exist in which the default setting is unsuitable. Con-
sider the case where data is written and the socket is then closed. Under the
default setting, the application may resume from the ���"��!����� method before
the data in transit has been transmitted, and the application has no way of telling
whether it was ever read by the other end. In this case one solution would be to
linger for a reasonable period of time while the close is in progress. If the trans-
mission is so critical, it is more to the point to wait for an application-defined
reply, rather than just sending it off into the ether.

If it is genuinely necessary to abort a connection rather than terminate it grace-
fully, the ‘hard close’ can be used.

Recommendations are occasionally seen to use this option to allow servers to
re-use a listening port quickly after they exit, especially during development. The
correct answer to this problem is the ‘reuse address’ option, which appears in
Java as the ��� �����"��!���D����$������ methods described in section 3.3.5.

Recommendations are also seen to use this option to overcome the problem of
lots of closed sockets in the ;#�	<K$#;�state at clients. Again, a better answer is
the ���"��!���D����$������ method described in section 3.4.9, although really
you should leave the ;#�	<K$#; state well alone: it exists for the very good reason
described in Table 3.3.

�.�! A���%��	��

��� ‘keep-alive’ is a technique which probes an active ��� connection to ensure
that the other end is still alive.

If the other end is alive, it will acknowledge the probe. If a keep-alive probe is
not acknowledged after a small number of retries, the socket is put into a ‘reset’
state, which will cause a ���"��	�������� to be thrown on the next read, write, or
close operation on the socket.

Keep-alive is a controversial option in ��� , for several reasons:

(a) It is implemented via a protocol ‘trick’ rather than by a dedicated protocol
element.25

e. If the timeout expires, the Berkeley Sockets and 	����� APIs both set �����,���� and
return <2, although this is not specified in 	��� Std �**� . � %�**� . As at "�� 1.4.2, Java ignores
all this anyway, so you can’t tell in Java at the closing end whether the timeout expired or not. The
author has requested an enhancement for ���"��!����� to throw an #����������#+	�������� in this
circumstance (Bug Parade id 4631988).

64 ���
���������	������������

(b) It is somewhat against the spirit of ��� , which was purposely designed to
allow intermediate routers to fail (�,�, to allow optimum routes to change)
during the lifetime of a connection 	��'������������'��������������������������:
keep-alive can therefore cause an otherwise live connection to fail.

(c) It consumes bandwidth, and indeed costs money on networks that charge
by the packet.

(d) It doesn’t keep anything alive, so it is misnamed: the name suggests that it
keeps a connection alive, which is completely unnecessary in ��� ; what it
actually does is detect, unreliably, whether the other party is still alive.

(e) Because of the limitations imposed on its implementation, described below,
its actual usefulness is rather limited.

�-� 1122 specifies a number of constraints on keep-alive implementations:26

(a) Keep-alive is an optional feature of ��� , not a mandatory one.

(b) If supported, it must be off by default.

(c) The interval between successful keep-alive probes must default to at least
two hours: usually, this interval can only be changed globally, typically only
by a super-user or administrator on platforms where they exist.

(d) It must be specifically enabled by any end-point which wants to ���
 keep-
alives, �,�, possibly by both ends of a connection; in other words, whether
keep-alive is on or off is a property of each endpoint, not of the connection as
a whole.

(e) It is primarily intended for use by servers, to avoid long-term loss of re-
sources for clients which have terminated; however it can be used by clients.

In Java, ��� keep-alive is controlled with the ���"��!���/���$�� � method:

class Socket
{
void setKeepAlive(boolean keepAlive)

throws SocketException:
boolean getKeepAlive() throws SocketException;

}

25. For details see Stevens Vol. I §23.3. The ‘trick’ consists in sending a ��� segment with a byte-
offset which has already been acknowledged, �,�, appearing to be a duplicate: this causes the other
end to issue an ��� specifying the next byte-offset it is expecting.
26. Braden, #�>�����������������������G����<�������������A)���, 	 ��- �-� 1122, 1989.

���
����������t cp 65

where "���$�� � is ���� if keep-alive is to be enabled, otherwise false. These meth-
ods both throw ���"��	�������� if keep-alive control is not supported by the cur-
rent platform, or if some underlying ��� error occurs.

Telnet servers typically enable keep-alive where possible. Sun’s implementa-
tion of ��	 enables keep-alive at clients if supported by the underlying platform.

Keep-alive should be viewed as a kind of ‘court of last resort’ for finally termi-
nating dead connections after two hours if it is available. It should not be relied
on as a substitute for sensible use of timeouts. You should consider using appli-
cation-level connection probes (‘pings’) where connections are expected to be of
long duration.

�.�& '�����
����

"�� 1.4 introduced APIs for sending and receiving ��� ‘urgent’ or ‘out-of-band’
(OOB) data:

class Socket
{
void sendUrgentData(int data) throws IOException;
void setOOBInline(boolean on) throws IOException;
boolean getOOBInline() throws IOException;

}

Urgent data is sent with the ���"��!����E�
����� method. This sends one byte
of urgent data on the socket, from the low-order eight bits of ��. Urgent data is
sent after any data already written to the socket output stream, and before any
data subsequently written to the socket output stream.

The operation is primarily intended to support ���
��� urgent data to non-Java
recipients, to comply with existing application protocols such as Telnet.

Java provides only limited support for ��������� urgent data: you can only
receive urgent data in Java in-line, which you must first enable with the
���"��!���++>#����� method with ���1�����.

When this state is �����
, urgent data is received inline with normal data. No
means is provided in "�� 1.4 of distinguishing urgent data from non-urgent data
at the receiver.

Doing so would require implementing a method for the � 	�������� operation of
�����() or the corresponding Posix.1g ��������() API. Implementing out-of-line recep-
tion of urgent data would require implementing the ���B��, flag of ����() somehow.

When this state is
�����
 (the default), urgent data is received ‘out-of-line’ �

�������)�
����
�
 by Java.

Obviously receiving out-of-band data in-line is something of an absurdity.

66 ���
���������	������������

�.�) ���--	�
�����

	� supports an optional ‘traffic class’ socket attribute. This attribute is a hint to
the network about the type of service required for packets originating from the
socket.

The traffic-class for a socket can be managed with the methods:

class Socket
{
int setTrafficClass(int tc)throws SocketException;
int getTrafficClass() throws SocketException;

}

The ���"��!
��;��������� method may return a different value from the one last
set, because the underlying network implementation may have ignored it.

The traffic class attribute primarily affects the path chosen through the net-
work. The underlying network implementation, including any intermediate
router or host, may ignore the value specified. The value has no effect on the local
��� protocol stack, but it acts as a hint to the nearest router, instructing it about
the type of dataflow required by this connection. The router may propagate the
information to neighbouring routers, and may alter the setting as required to
implement the requested class of service.

The meaning of the attribute varies between 	��� and 	��� as described in
section 3.19.1 and section 3.19.2. This is one of the few places in the Java net-
working API where you need to be aware of differences between 	��� and
	��� .

8,7D,7 ipv4 ��)!�$��$�������

In 	��� , the value supplied to and returned by these methods is the eight-bit
TOS (type of service) field defined in �-�
791. The lowest-order bit, with value
���2, is reserved and must be zero.The value is usually zero or one of the
�-� 1349 ��� values shown in Table 3.4.

��,��
�.� 	��� type-of-service values

���� ����� �����	
�	�

– � Normal service

	� ���B������ ���7 Minimise monetary cost

	� ���B��� 	�,	� 	�0 ���� Maximise reliability

	� ���B���������� ���M Maximise throughput

	� ���B������0 ��2� Minimise delay

���
����������t cp 67

These are known as the ‘���� ’ bits, an acronym from the initial letters of
‘delay’, ‘throughput’, ‘reliability’, and ‘cost’. Java provides no symbolic constants
for these values. Other values are possible: however, a value other than those
above does not necessarily imply one or more of the above attributes, even
though the corresponding bit(s) may be set in the value.

The "�� 1.4.0 and 1.4.1 documentation incorrectly states: ‘The ��� field is [a] bitset
created by bitwise or-ing values’. This was the case as of �-� 791–5, which were
rescinded in this respect by �-� 1349, the �-� referenced by the "�� documentation.
This says ‘because this specification redefines ��� values to be integers rather than sets
of bits, computing the logical +D�of two ��� values is no longer meaningful. For exam-
ple, it would be a serious error for a router to choose a low delay path for a packet whose
requested ��� was 1110 simply because the router noted that the former “delay bit” was
set.’ However, ‘although the semantics of values other than the five listed above are not
defined by this memo, they are perfectly legal ��� values.’

The three highest-order bits, �,�, those masked by ����, are a ‘precedence’ or pri-
ority field representing ‘an independent measure of the importance of the data-
gram or segment’.

These options affect routing paths as well as priority in the router. For exam-
ple, a satellite link would be a good choice to maximize throughput, but a bad
choice for minimizing latency. The options are often set asymmetrically: for
example, an application sending bulk data might choose to maximize through-
put; on the other hand the receiving application might choose to minimize
latency on its sent packets so that acknowledgements are sent quickly.

8,7D,2 i p v 6 ������������

In 	��� , the value supplied and returned by these methods is the eight-bit ��
(traffic class) field defined in �-� 2460. At the time of writing, the usage and
semantics of this field were still the subject of experiment and were not yet
defined, although presumably the values defined in Table 3.4 will continue to be
supported with the same meanings.

According to BugID 4529569, the 	��� ‘flow label’ field, another traffic-shaping
parameter, is always set to zero. This BugID is a request for further socket APIs: to
control the flow label; to return the flow label of an individual packet; and to set ��� # ��
on a per-packet basis, presumably for ��� packets.

8,7D,8 -�����������
���������

�-� 2474 obsoletes the previous RFCs mentioned above, and redefines the ���
and traffic-class fields as the Differentiated Services Codepoint (����), or �� for
short. This is a value field which maps inside the router to a ‘per-hop behaviour’
(��,), a behaviour which can be composed of all sorts of router-dependent

68 ���
���������	������������

things including one or more or the attributes above, selection of actual queuing
algorithms, and so forth, according to the router setup. The router may write this
field based on a router-specific traffic classification scheme, and it may rewrite
the field to something the next router understands.

8,7D,9 ����������

If you don’t have a router at all, �,�, you have a closed ��� , there is no point in
setting this option at all, as only routers take any notice of it.

Applications such as -�� still use the �-� 1345 definitions. Basically, applica-
tions can use any value the nearest router understands, and if these happen to be
the �-� 1349 ��� values, we are all in luck. The �-� 1349 values seem like a
good start if one or more of the following are true:

(a) You have a pre-�-� 2474 router.

(b) You have an �-� 2474-compliant router which is programmed to under-
stand the �-� 1349 values, or

(c) You aren’t sure.

The RFCs mentioned in this section are summarized in Table 3.5.

�.�* ���-�������
���-�������

In "�� 1.5 the ‘performance preferences’ for a socket can be expressed via the
method:

��,��
�. TOS & traffic-class RFCs

�-� �
����!��"�
!���� #�����

791 Defines ��� ‘along the abstract parameters [of[
precedence, delay, throughput, and reliability’.

795 Defines delay, throughput, and reliability as per
Table 3.4; values to be �� -ed together bitwise.

1349 791–5 Adds ‘cost’, so all four ‘���� ’ values are now defined;
redefines ��� as integers rather than sets of bits, so
removes ability to �� values together bitwise.

1455 Experimentally adds the ��� value ���� for ‘physical
link security’.

2460 Defines the 	��� ‘traffic class’ field for 	��� .

2474 1349, 1455 Redefines ��� and traffic class as ‘differentiated
services’ as described in section 3.19.3.

���
����������t cp 69

class Socket
{
void setPerformancePreferences
(int connectionTime, int latency, int bandwidth)
throws SocketException;

}

class ServerSocket
{
void setPerformancePreferences
(int connectionTime, int latency, int bandwidth)
throws SocketException;

}

where the three parameters indicate the relative importance of short connection
time, low latency, and high bandwidth respectively.

This feature is intended for use with multi-protocol implementations of Java
where ��� is not the only available protocol, and provides hints as to how to
select among the available protocols. If this operation is performed on a ���"��, it
must be called before connecting the socket, and invoking it afterwards has no
effect. No ‘get’ method is provided. If this operation is performed on a
��� �����"��, it must be called before the ��� �����"�� is bound.

�.�� ����	��
	�
���
��������

A revised ��� server which implements the improvements suggested above is
shown in Example 3.6.

class ConcurrentTCPServer implements Runnable
{
public static final int BUFFER_SIZE= 128*1024;// 128k
public static final int TIMEOUT = 30*1000; // 30s
ServerSocket serverSocket;

ConcurrentTCPServer(int port) throws IOException
{
// (Don’t specify localAddress for ServerSocket)
serverSocket = new ServerSocket(port);
// Set receive buffer size for accepted sockets
// before accepting any, i.e. before they are connected
serverSocket.setReceiveBufferSize(BUFFER_SIZE);
// Don’t set server socket timeout

}

70 ���
���������	������������

public void run()
{
for (;;)
{
try
{
Socket socket = serverSocket.accept();
// set send buffer size
socket.setSendBufferSize(BUFFER_SIZE);
// Don’t wait forever for client requests
socket.setSoTimeout(TIMEOUT);
// despatch connection handler on new thread
new Thread(new ConnectionHandler(socket)).start();

}
catch (IOException e)
{
/*Exception handling, not shown … */

}
} // end for (;;)

} // end run()
} // end class

45�����
�.� Improved ��� server

Further server architectures are discussed in Chapter 5 and Chapter 12.
A revised ��� client which implements the improvements suggested above is

shown in Example 3.7.

public class TCPClient implements Runnable
{
public static final int BUFFER_SIZE= 128*1024;// 128k
public static final int TIMEOUT = 30*1000; // 30s
Socket socket;

public TCPClient(String host, int port) throws IOException
{
this.socket = new Socket();
// Set receive buffer size before connecting
socket.setReceiveBufferSize(BUFFER_SIZE);
// connect to target
socket.connect(new InetSocketAddress(host, port));
// Set send buffer size and read timeout
socket.setSendBufferSize(BUFFER_SIZE);
socket.setSoTimeout(TIMEOUT);

}

���
����������t cp 71

public void run()
{
try
{
// prepare to send request
OutputStream out =
new BufferedOutputStream(socket.getOutputStream(),
BUFFER_SIZE);

// send request data, not shown …

// flush request
out.flush();

// prepare to read reply
InputStream in =
new BufferedInputStream(socket.getInputStream(),
BUFFER_SIZE);

// receive reply & process it, not shown …
}

catch (IOException e)
{
/*…*/

}

finally
{
try
{
if (socket != null)
socket.close();

}

catch (IOException e)
{
// ignored

}
} // end finally

} // end run()
} // end class

45�����
�.! Improved ��� client (continued)

73

�������� ����������

��	�
 �������
 �	 ������� the new I/O features introduced in "�� 1.4.
These new features are contained in the new � !��� package and its sub-pack-
ages, and in a small number of complementary revisions made to the � !�� and
� !��� packages.

We will discuss these features along general lines, mainly insofar as they affect
network I/O. Subsequent chapters delve into the detail, discussing scalable ���
and scalale ��� respectively.

�.� ���������	��

‘New I/O’ was introduced into "�� 1.4 to ‘provide new features and improved
performance in the areas of buffer management, scalable network and file I/O,
character-set support, and regular-expression matching’.

The specification was developed in the Java Community Process as " �� 51.
The major components of " �� 51 for advanced network programming are stated
as:

(a) Scalable I/O, in the form of ‘non-blocking mode’ and ‘multiplexing’, and

(b) Fast buffered binary and character I/O.

Non-blocking mode and multiplexing make it possible to write ‘production-qual-
ity web and application servers that scale well to thousands of open connections
and can easily take advantage of multiple processors’.1 This is mainly because in
��� and ��� servers using non-blocking I/O and multiplexing, a separate Java

1. All quotations in this section are from the "�� 1.4 documentation and the " �� -51 specification
unless indicated otherwise.

74 ���
���������	������������

thread is not required for every open connection, unlike the ��� servers we have
seen in Chapter 3.

Fast buffered binary and character I/O make it possible to write ‘high-per-
formance, I/O-intensive programs that manipulate streams or files of binary
data’.

9,7,7 ���!������	��'����������

‘Traditional’ Java I/O—the � !�� package—is provided as a hierarchy of
‘stream’ classes which share and extend a common API. A Java stream is an ob-
ject derived from #��������� or +���������� which represents an open con-
nection, or data path, to an external data source or sink. Streams are unidirec-
tional, �,�, can be used for either input or output but not both. Streams can be
chained together so as to form I/O filter chains: for example, a ��#���������
is often chained to a >�������#���������, which in turn is often chained to an
input stream obtained from a ���"�� or a C���#���������:

Socket socket = new Socket(“localhost”,7);
InputStream in = socket.getInputStream();
// Add buffering to input
in = new BufferedInputStream(in);
// Add data-conversion functions to input
DataInputStreamdataIn = new DataInputStream(in);

As this example shows, various types of stream exist which together combine the
functions of input-output, buffering, and data conversion.

Traditional streams provided buffering as an optional feature, rather than a
built-in part of the I/O mechanism; this design made it possible to run multiple
buffers, whether deliberately or inadvertently. The technique used for chaining
streams together can imply a data copy operation at each stream junction, espe-
cially when doing data conversions. All these factors can lead to inefficient I/O in
Java programs.

In Java ‘new I/O’, these three functions have been separated. Input-output is
provided by a new abstraction called a ‘channel’; buffering and data conversion is
provided by a new abstraction called a ‘buffer’. There is a hierarchy of channel
classes and a separate hierarchy of buffer classes.

The rationale behind the new I/O is clear. Separating the I/O functions into
channel operations and buffer operations allowed the Java designers to:

(a) Require that a channel must always be associated with a single buffer.

(b) Specify the ways that channels and buffers can be fitted together.

(c) Do so via the type system so you can’t even compile an incorrect program.

(d) Provide reliable and portable semantics for asynchronous closing and inter-
ruption of I/O.

���������� 75

(e) Extend the channel and buffer classes in different directions without being
‘imprisoned’ by the Java type system.

(f) Extend the channel and buffer classes to provide higher-level functions,
such as polling and non-blocking I/O in channels, direct buffers, and char-
acter-set conversion buffers.

9,7,2 �������	������	����

New I/O is performed via channels and buffers. A ‘channel’ is connected to an
external data source and/or sink (�,�, a file or network socket), and has read
and/or write operations. A ‘buffer’ holds data within the program, and provides
‘get’ and ‘put’ operations. Reading from a channel reads data from the source
and puts it into the buffer; conversely, writing to a channel gets data from the
buffer and writes it to the sink.

More powerful channel classes exist which support multiplexing as well as
reading and writing. Different buffer classes exist for different primitive types.

�.� ��������

A Java channel represents an open data path, possibly bidirectional, to an exter-
nal data source or sink such as a file or a socket.

By contrast with streams, channels can be bidirectional, �,�, can perform both
input and output, if the external data object (the source or sink) permits. Chan-
nels cannot be chained together like I/O streams: instead, channels are confined
to actual I/O operations. Buffering and data conversion features are provided in
� !��� by �������, discussed in section 4.3.

9,2,7 �'�����'�����')

The complete tree of channel interfaces and classes is shown in Table 4.1.

��,��
�.� Hierarchy of channels

$���	��������� $���������	�
������!

�'����

⎩ �������!������'���� �'����

⎩ #�
���")���'���� �'����

⎪ ⎩ ���������")���'���� #�
���")���'����

⎩ ?������")���'���� �'����

⎪ ⎩ &�'�����")���'���� ?������")���'����

⎩ ")���'���� #�
���")���'������?������")���'����

76 ���
���������	������������

Each concrete channel implementation is associated with exactly and only the
I/O operations it is capable of. For example, ��� �����"�������� implements
���������������, whose purpose we will encounter in section 4.5, but the only
I/O operation it supports is closure. By contrast, ���"�������� implements
>)��������: therefore, indirectly, it also implements D�����>)�������� and
K������>)��������, so it supports simple reads and writes; it also implements
��������
>)�������� and *������
K����������, so it supports gathering
reads and scattering writes (both to be described later).

9,2,2 �'����������������
����'�
�

� !���!������ is the root of the hierarchy of channel interfaces. The ������
interface only exports a ����� operation and an ��+��� query:

interface Channel
{
boolean isOpen();
void close() throws IOException;

}

The D�����>)�������� interface exports a simple ��� operation:

$������#������������������ �'�������������!������'����

⎩ C��������� ")���'���������������")���'������
&�'�����")���'����

⎩ ��������������� �'����

⎩ $���������������������

⎩ ��
�����"�������� ")���'���������������")���'������
&�'�����")���'����

⎩ :���!���"������ ?������")���'������&�'�����")���'����

⎩ :���!������������ #�
���")���'���������������")���'����

⎩ ��� �����"�������� �'����

⎩ ���"�������� ")���'���������������")���'������
&�'�����")���'����

a. in � !���!�������!���: an implementation detail.

��,��
�.� Hierarchy of channels (continued)

$���	��������� $���������	�
������!

���������� 77

interface ReadableByteChannel extends Channel
{
// returns the number of bytes read
int read(ByteBuffer destination) throws IOException;

}

The K������>)�������� interface exports a simple '���� operation:

interface WritableByteChannel extends Channel
{
// returns the number of bytes written
int write(ByteBuffer source) throws IOException;

}

The >)�������� interface unifies the readable and writable interfaces:

interface ByteChannel
extends ReadableByteChannel, WritableByteChannel

{
}

The ��������
>)�������� interface exports scatter-read methods, whereby data
is read with one underlying operation and scattered into multiple buffers (tar-
gets):

interface ScatteringByteChannel extends ReadableByteChannel
{
// Both methods return the number of bytes read
long read(ByteBuffer[] targets) throws IOException;
long read(ByteBuffer[] targets, int offset, int length)

throws IOException;
}

The *������
>)�������� interface exports gather-write methods, whereby the
data to be written is gathered up from multiple buffers (sources) and written with
one underlying operation:

interface GatheringByteChannel extends WritableByteChannel
{
// Both methods return the number of bytes written
long write(ByteBuffer[] sources) throws IOException;
long write(ByteBuffer[] sources, int offset, int length)

throws IOException;
}

78 ���
���������	������������

In both cases, ������ and ���
�� refer to the >)��>�����NO array itself, not to any
individual >)��>�����.

The ‘scatter-read’ and ‘gather-write’ methods correspond to the Berkeley Sockets
��
�56 and 	�����56 APIs. Note that the methods of these interfaces return ���
s rather
than ���s. This was a late change in the � !��� specification: ���
s are required be-
cause there can be up to elements in the >)��>�����[] array, each of which can
contain up to bytes; the total size of the transfer can therefore be up to
bytes, which is too many to be represented in an ���.

The #������������������ interface identifies channels which can be closed and
interrupted asynchronously:

interface InterruptibleChannel extends Channel
{
void close() throws IOException;

}

An interruptible channel may be closed asynchronously: �,�, a thread may invoke
the #������������������!����� method while another thread is executing a block-
ing I/O operation on the channel. This causes the blocked thread to incur an
$�)��������������	��������.

An interruptible channel may be interrupted asynchronously: �,�, a thread may
invoke ;����!��������� on another thread which is executing a blocking I/O op-
eration on the channel. This closes the channel, and causes the blocked thread to
incur a ������>)#��������	��������.2

9,2,8 �����������'����

A channel can be obtained from a C���#���������, a C���+����������, or a
D����$�����C���:

FileChannel FileInputStream.getChannel();
FileChannel FileOutputStream.getChannel();
FileChannel RandomAccessFile.getChannel();

A channel can also be obtained from a ���"��, ��� �����"��, or ��
�����"��,
but only if the socket was created from a channel, so the operation is circular.

2. This may surprise. We might have expected the channel to remain open and the blocked thread
to get an #����������#+	��������. The close semantics are dictated by the requirement to provide
the same semantics across the various supported platforms, specifically, the strange behaviour of
Linux when a thread blocked in a socket operation is interrupted asynchronously.

2
32

1–

2
32

1– 2
64

1–

���������� 79

Instead of getting the channel from the socket, it is usually more to the point to
get the socket from the channel:

SocketChannel channel = SocketChannel.open();
Socket socket = channel.socket();

ServerSocketChannel channel =
ServerSocketChannel.open();

ServerSocket serverSocket = channel.socket();

DatagramChannel channel = DatagramChannel.open();
DatagramSocket datagramSocket= channel.socket();

A �����������"�������� class was reportedly planned for "�� 1.5 but did not appear.

Finally, a channel can also be obtained from a � !���!:���:

Pipe pipe = Pipe.open();
Pipe.SinkChannel sinkChannel = pipe.sink();
Pipe.SourceChannel sourceChannel = pipe.source();

The channel associated with a file input or output stream, random access file,
socket, or pipe is unique: repeated calls of
��������, :���!���", or :���!������
always return the same object.

9,2,9 �'����������������<�'���	����
������

The ������� class provides static methods to convert between streams and
channels:

class Channels
{
// convert streams to channels
static ReadableByteChannel newChannel(InputStream is);
static WritableByteChannel newChannel(OutputStream os);

// convert channels to streams
static InputStream
newInputStream(ReadableByteChannel ch);

static OutputStream
newOutputStream(WritableByteChannel ch);

}

It also provides methods to convert channels into D����� and K������ which are
not discussed further in this book. The streams, readers, and writers delivered by
these methods have a number of special properties:

80 ���
���������	������������

(a) They are not buffered.

(b) They do not support the ��"/����� mechanism.

(c) They are thread-safe.

(d) They can only be used in blocking mode: if used in non-blocking node (to be
discussed later), their read and write methods will all throw an
#���
�>���"��
����	��������!

(e) Closing them causes the underlying channel to be closed.

Property (d) is important. It means that you can only read and write Java da-
tatypes via methods of ��#���� and ��+�����, or serialize Java objects via
methods of +�����#���� and +�����+����� on a channel which is in blocking
mode.

The following code fragments will throw an #���
�>���"��
����	�������� at
the places indicated:

SocketChannel channel = SocketChannel.open();
channel.connect(new InetSocketAddress(“localhost”,7));
channel.configureBlocking(false);

InputStream in = Channels.newInputStream(channel);
ObjectInputStream objIn = new ObjectInputStream(in);

// The next line throws an IllegalBlockingModeException
Object object = objIn.readObject();

OutputStream out = Channels.newOutputStream(channel);
ObjectOutputStream objOut
= new ObjectOutputStream(out);

// The next line throws an IllegalBlockingModeException
objOut.writeObject(object);

�.� 8�--���

A channel can only perform input-output in conjunction with a buffer.
A � !��� ‘buffer’ is a container for data of a single primitive type. A buffer

class is provided for each of the primitive types �)��, ���, �����, ���,����
, ����,
and ������ (but not for ������). Buffers have finite capacities.

In addition to data, buffers also contain four interdependent state attributes:
�!���), �����, !�������, and ���:

(a) The �!���) of a buffer is the number of elements it contains. What this
represents in bytes depends on the size of the datatype supported by the
buffer. The capacity is immutable: it is fixed when the buffer is created.

���������� 81

(b) The ����� of a buffer is the index of the first element that should not be read
or written. The limit is mutable.

(c) The !������� of a buffer is the index of the next element that should be read or
written. The position is mutable.

(d) The ��� of a buffer is the index to which its position will be restored if its
����� method is invoked. The mark is mutable: it is not always defined but it
can be defined and subsequently modified by program operations. It is un-
defined when a buffer is first created. The mark is discarded (�,�, becomes
undefined) if the position or the limit is adjusted to be less than the current
mark.

�!���), �����, !�������, and ��� always satisfy the invariant:

0 ≤ ��� ≤ !������� ≤ ����� ≤ �!���) <�=
�.�>

which is preserved by all operations on the buffer.
The amount of remaining data or space in a buffer is given by:

����� − !������� <�=
�.�>

The position, limit, and capacity of a buffer are illustrated in Figure 4.1.

Operations are provided for allocation of new buffers (������) and creating
buffers from existing buffers (
�!�����(� �����(� 	�!), as we will see
in section 4.3.2.

Buffers provide type-specific !�� and ��� operations which add data to them
and remove data from them respectively: these are the basic functions of a buffer.
The !�� and ��� operations are invoked by the channel ��
 and 	���� operations
respectively. It’s important to understand this, and to get it the right way around.
When writing data, a channel has to ��� it from a buffer; when reading data, a
channel has to !�� it into a buffer.

Buffers also provide simple operations which directly modify their internal
state (���, !�������, �����, and �!���)), as we will see in section 4.3.4, and com-
pound operations (����(����!(���	��
(����!��) which modify more than one of
these items at a time, as we will see in section 4.3.5 &ff.

9	����
�.�. Buffer attributes

ad

position capacitylimit

ca fe ba be de ad be ef fa de be
� � � � � � � � 	 �� �� ��

82 ���
���������	������������

9,8,7 "������'�����')

The complete tree of buffer classes is shown in the tree diagram of Table 4.2.

To simplify the discussion, we introduce a meta-notation along the lines of the
"�� 1.5 ‘Generics’ language feature,3 using 0 to indicate any primitive type for
which a buffer implementation is provided, for example:

class Buffer<T> extends Buffer
{
// this is a buffer for objects of primitive type �

}

9,8,2 ����������"�����

Buffers are not constructed but obtained.4 Each concrete buffer implementation
for a primitive type 0 exports methods for the creation of buffers:

class Buffer<T> extends Buffer
{
static Buffer<T> allocate(int capacity);

Buffer<T> asReadOnlyBuffer();
boolean isReadOnly();

��,��
�.� Hierarchy of buffers

>�����

⎩ >)��>�����

⎪ ⎩ �����>)��>�����

⎩ ���>�����

⎩ ������>�����

⎩ C���>�����

⎩ #��>�����

⎩ ���
>�����

⎩ �����>�����

3. To be clear, buffers are not actually defined in "�� 1.5 this way (because the types concerned are
primitive types). I am just using this notation to avoid describing seven or eight structurally
identical classes.
4. This is because they are specified as abstract classes and implemented via hidden classes
returned by an object factory, to support the NIO SPI (service provider interface).

���������� 83

Buffer<T> duplicate();
Buffer<T> slice();

static Buffer<T> wrap(T[] array);
static Buffer<T> wrap(T[] array, int offset, int length);

}

The static ������ method is really a factory method which returns a new empty
buffer of the specified �!���) and associated type 0. �!���) is specified as the
desired number of items of type 0, not as a number of bytes (if different).

The static '�� methods return a new buffer wrapped around an array of data.
The �D��+��)>�����, ��������, and ����� instance methods return buffers

whose internal data mirrors that of the current buffer, but whose internal state
settings differ in various ways.

The �D��+��)>����� method returns a read-only buffer which shares the
current buffer’s data, but not its ���, !�������, or �����, although these are ini-
tially identical. Changes to the current buffer’s data are reflected in the read-only
buffer (but not ����� ����: a read-only buffer is immutable). The ��D��+��)
method returns the read-only status of a buffer.

The �������� method returns a buffer which shares the current buffer’s data,
but not its ���, !�������, or �����, although these are initially identical. Changes
to the current buffer’s data are reflected in the new buffer and vice versa. The new
buffer is read-only if and only if the current buffer is read-only; ditto ‘direct’.

The ����� method returns a buffer whose content is a shared sub-sequence—a
‘slice’—of the source buffer’s content, extending from the source buffer’s !���$
���� to its �����. Changes to the current buffer’s data will be reflected in the new
buffer and vice versa. The new buffer’s ���, !�������, and ����� are independent
of those of the current buffer The new buffer is read-only if and only if the current
buffer is read-only; ditto ‘direct’.

The initial settings of the buffers returned by each of the above methods are
summarized in Table 4.3.

��,��
�.� Initial �	� buffer settings

�����! ��
��	��
��	�	� �	�	� ���%

������-�����)3 1������) zero = capacity undefined

'��-��)3 1���)!���
�� zero = capacity undefined

'��-��)�������������
��3 1����
�� 1������� 1��������P�
���
��

undefined

�D��+��)>����� initially as source, not mirrored

�������� initially as source, not mirrored

����� = source
capacity

zero = source limit
− source
position

initially as
source

84 ���
���������	������������

9,8,8 "������
���!�������.�I���J��
�I!��J

Each concrete buffer implementation for a primitive type 0 exports methods
which get items of type 0 from the buffer; it also exports methods which put
items of type 0 into the buffer:

class Buffer<T> extends Buffer
{
� get(); // Get one �, relative
Buffer<T> get(�[] buffer); // Get bulk �, relative
Buffer<T> get(�[] buffer, int offset, int length);
Buffer<T> get(int index); // Get one �, absolute

Buffer<T> put(� data); // Put one �, relative
Buffer<T> put(�[] buffer); // Put bulk �, relative
Buffer<T> put(�[] buffer, int offset, int length);
Buffer<T> put(int index, � data); // Put one �, absolute
// Put remaining � from source into ‘this’
Buffer<T> put(Buffer<T> source);

}

The
�� and ��� methods which take array parameters provide bulk operations.
The
�� and ��� methods which take ����� parameters provide ‘absolute’ opera-
tions which do not depend on or disturb the !������� of the buffer.

All the other methods are ‘relative’ operations which operate at !������� and
then advance it by the number of items transferred (��� the number of bytes
transferred, if different).

The absolute ��� operation gets a single data item from the buffer at the speci-
fied ��
�%, without disturbing the buffer’s !�������, after checking that the invari-
ant:

0 ≤ ��
�% < !������� <�=
�.�>

holds, throwing an #����+��+�>�����	�������� if not.
The relative ��� operation first checks to see if the amount of remaining data

given by Equation 4.2 is enough to satisfy the request, throwing a
>�����E�������'	�������� if not. If the operation specifies a data array, offset,
and length, it also checks that the following invariant holds:

0 ≤ ���
�� + ������ ≤ ��!���
�� <�=
�.�>

throwing the unchecked #����+��+�>�����	�������� if not; otherwise it trans-
fers the data starting at the current !�������, and finally advances !������� by the
number of data items transferred.

���������� 85

The ��� methods are optional operations. A read-only buffer does not allow
them: if they are invoked they throw a D��+��)>�����	��������. This is a Java
D������	��������, �,�, an unchecked exception.

A buffer is either read-only or read-write. Any buffer can be converted into a read-only
buffer of the same type and mirroring the same data with the �D��+��) method de-
scribed in section 4.3.2.

The absolute put operation puts a single data item into the buffer at the specified
��
�%, without disturbing the buffer’s !�������, after checking that the invariant of
Equation 4.3 holds, throwing an #����+��+�>�����	�������� if not.

The relative !�� operation first checks to see if the amount of remaining space
given by Equation 4.2 is sufficient to satisfy the request, throwing a
>�����+ �����'	�������� if not. If the operation specifies a data array, offset, and
length, it also checks that the invariant of Equation 4.4 holds , throwing the un-
checked #����+��+�>�����	�������� if not. Otherwise it transfers the data start-
ing at the current !�������, and finally advances !������� by the number of data
items transferred.

The effect on buffer attributes of a relative ��� or !�� of one item is shown in
Figure 4.2.

9,8,9 ���!����������������!�������

The abstract >����� class exports methods which modify its state and which are
inherited by the concrete type-specific buffer classes:

9	����
�.�. Buffer before and after one-item relative
�� or ���

ad

position capacitylimit

ca fe ba be de ad be ef fa de be

� � � � � � � � 	 �� �� ��

ad

position capacitylimit

ca fe ba be de ad be ef fa de be

� 2 7 Q � 8 = M R 2� 22 27%

86 ���
���������	������������

class Buffer
{
int position(); // get position
int limit(); // get limit
int capacity(); // get capacity

Buffer position(int position); // set position
Buffer limit(int limit); // set limit

boolean hasRemaining();
int remaining();

Buffer mark();
Buffer reset();

}

The ��D������
 method returns true if and only if the buffer has data ele-
ments between the current !������� and the current �����. The �������
 method
returns the number of such data elements (��� the number of bytes, if different).
The ��" method sets the buffer’s ��� to the current !�������. The ����� method
resets !������� to the current ��� if any, otherwise it throws an
#� �����"	��������. This operation is used when re-reading or overwriting
data.

9,8,4 ���!���
��������������!�������

The following methods operate on the ���, !�������, and ����� at a higher level:

class Buffer
{
Buffer clear();
Buffer flip();
Buffer rewind();

}

These operations are discussed in detail in the following subsections.

9,8,: I����J��!������

The ���� operation clears the buffer logically (�,�, without disturbing the data
contents). This is usually done prior to a !�� operations:

buffer.clear();
buffer.put(…);

or a channel ��
 operation, which is equivalent from the buffer’s point of view:

���������� 87

buffer.clear();
channel.read(buffer);

The ���� operation sets !������� to zero and ����� to �!���), as shown in
Figure 4.3.

9,8,; I���!J��!������

The curiously named ���� operation makes data which has just been ‘put’ into the
buffer available for ‘getting’. It is used after putting data into the buffer and be-
fore getting it out again:

buffer.put(…);
buffer.flip();
buffer.get(…);

Because of the equivalence of ��
 with !��, and 	���� with ���, the ���� operation is
used in both directions of I/O. Consider a channel write operation:

buffer.put(array);
buffer.flip();
channel.write(buffer);

or a channel read operation:

channel.read(buffer);
buffer.flip();
buffer.get(array);

ad

position capacitylimit

ca fe ba be de ad be ef fa de be

� � � � � � � � 	 �� �� ��

ad

position capacity
limit

ca fe ba be de ad be ef fa de be

� � � � � � � � 	 �� �� ��

9	����
�.�. Buffer before and after ����

88 ���
���������	������������

The ���� operation can be thought of as flipping the buffer from !�����
 mode to
����	���� mode. The ���� operation sets ����� to !������� and !������� to zero, as
shown in Figure 4.4.

9,8,C I#�	��
J��!������

The ��'��� operation rewinds the buffer, assuming that ����� has been set appro-
priately. It should be performed when getting or writing the same data more than
once:

channel.write(buffer); // write data
buffer.rewind();
buffer.get(array); // get what was written

or:

buffer.get(array); // get what’s to be written
buffer.rewind();
channel.write(buffer); // write it

or:

channel1.write(buffer); // write data to channel 1
buffer.rewind();
channel2.write(buffer); // write same to channel 2

The ��'��� operation sets !������� to zero and does not alter �����, as shown in
Figure 4.5.

9	����
�.�. Buffer before and after ����

ad

position capacitylimit

ca fe ba be de ad be ef fa de be

� � � � � � � � 	 �� �� ��

ad

position capacitylimit

ca fe ba be de ad be ef fa de be

� � � � � � � � 	 �� �� ��

���������� 89

9,8,D I���!��J��!������

Each concrete buffer implementation for a primitive type 0 exports a method for
compacting buffers:

class Buffer<T> extends Buffer
{
Buffer<T> compact();

}

The ������ operation compacts the buffer after a
�� operation (�,�, a channel
write) so that any ‘un-got’ data is now at the beginning of the buffer, and that a
subsequent ��� will place new data after this data, with maximum space being
available for the ���.

The ������ operation is generally performed in conjunction with the ���� op-
eration when reading and writing, as shown in the following rather neat copy
operation:

buffer.clear();
// Loop while there is input or pending output
while (in.read(buffer) >= 0 || buffer.position() > 0)
{
buffer.flip();
out.write(buffer);
buffer.compact();

}

This example illustrates several key concepts:

9	����
�. . Buffer before and after ��	��

ad

position capacitylimit

ca fe ba be de ad be ef fa de be
� � � � � � � � 	 �� �� ��

ad

position capacitylimit

ca fe ba be de ad be ef fa de be
� � � � � � � � 	 �� �� ��

90 ���
���������	������������

(a) The ��� operation executes; if it returns a negative value, end-of-stream has
been reached.

(b) At this point, !������� is the count of data items remaining to be written start-
ing from position zero; if !������� is zero, nothing remains to be written.

(c) The ���� operation readies the buffer for the write operation.

(d) The '���� operation writes as much as can be written.

(e) The ������ operation readies the buffer for the next read operation. which
will append new data to the end of the buffer.

(f) The loop iterates while new data is read (���-3 0 �) or there is still pending
data to write (������!��������-3 0 �).

Note that once end-of-stream has been reached, the iterations consist of '����
operations only; in other words, the sequence:

while (buffer.position() > 0)
{
buffer.flip();
out.write(buffer);
buffer.compact();

}

is equivalent to the sequence

while (buffer.hasRemaining())
out.write(buffer);

although the latter is more efficient, as it doesn’t move the data around. If maxi-
mum efficiency is required, the copy example above can be rewritten thus:

buffer.clear();
// Loop while there is input
while (in.read(buffer) >= 0)
{
buffer.flip();
out.write(buffer);
buffer.compact();

}
// final flush of pending output
while (buffer.hasRemaining())
out.write(buffer);

���������� 91

�hese copying examples work equally well in blocking mode or non-blocking
mode (discussed in section 4.4), although it is preferable to use a �������� to de-
tect pending input and available output space as discussed in section 4.5.

Like the ��� operation, the ������ operation is optional, and is not supported
by read-only buffers: if invoked on a buffer which doesn’t support it, a
D��+��)>�����	�������� is thrown. This is a Java D������	��������, �,�, an un-
checked exception.

The ������ operation proceeds as follows:

(a) It discards any data which has already been ‘got’,��,�, any data before !�������,

(b) It moves any remaining data (between !������� and �����) to the beginning of
the buffer.

(c) It sets !������� to ����� − !������� (�,�, the index after the last data item
moved),5 and sets ����� to �!���).

This is illustrated in Figure 4.6.

9,8,73 ")����������

Byte buffers exhibit all the behaviour describe above, but the >)��>����� class is
more powerful than the other type-specific classes in a number of ways.

You will have noticed that all the channel ��� and '���� methods operate on a
>)��>����� rather than a >�����. This makes >)��>����� the foundation of channel
I/O.

5. The "�� 1.4.0 online documentation incorrectly had !��������←������ − 1 − !�������; this was
corrected in "�� 1.4.1.

9	����
�.�. Buffer before and after ���!��

ad

position capacitylimit

ca fe ba be de ad be ef fa de be
� � � � � � � � 	 �� �� ��

ad

position capacity
limit

ad be ef fa de ad be ef fa de be
� 2 7 Q � 8 = M R 2� 22 27%

{{

92 ���
���������	������������

This may surprise. Why not define ��� and '���� to take a >����� parameter instead?
The reason seems to be that I/O really does transfer physical bytes, rather than transfer-
ring some abstraction whose semantics could satisfactorily be expressed by the abstract
>����� class. Transforming the transferred bytes to and from other datatypes is a sepa-
rate issue, and it is programmed separately and explicitly in Java new I/O.

The >)��>����� class exports methods to get all the supported primitive datatypes,
�,�, all the Java primitive types other than ������. For example, for type ����:

class ByteBuffer extends Buffer
{
float getFloat();
float getFloat(int index);

ByteBuffer putFloat(float data);
ByteBuffer putFloat(int index, float data);

}

In our meta-notation, the following methods are supported for each type 0:

class ByteBuffer extends Buffer
{
� get�();
� get�(int index);

ByteBuffer put�(� data);
ByteBuffer put�(int index, � data);

}

In each case, as you would expect, the buffer !������� is advanced by the correct
amount for the size of the datatype concerned,6 although the index parameters
are specified in terms of byte offsets, not offsets of items of type 0.

Byte buffers can be allocated as ‘direct’ buffers:

class ByteBuffer extends Buffer
{
static ByteBuffer allocateDirect(int capacity);

}

A
����� buffer is one upon which the " �� ‘will make a best effort to perform
native I/O operations directly’, �,�, avoiding intermediate copy steps into and out

6. Datatype sizes are platform-independent: they are defined in 0'�����A�������!����������,
3rd edition,section 4.2. Java programs have little need to be aware of the sizes of primitive types, as
this design exemplifies.

���������� 93

of the " �� . Such buffers typically have much higher allocation and deallocation
costs than normal (indirect) buffers, but perform much more quickly when in
use. They are typically used for large, long-lived buffers. If a direct buffer is used,
not a single bit of data enters the " ��.

9,8,77 =��	��������

A byte buffer can also create one or more ‘views’ of itself. A ���	�is a buffer of
another datatype, whose content mirrors that of the data remaining in the source
buffer. View buffers have the following advantages over the type-specific get/put
methods described in section 4.3.10:

(a) They are indexed in terms of datatype entry offsets rather than byte offsets.

(b) They provide bulk operations into and out of arrays.

(c) View buffers can be ‘direct’ as just described: view buffers are the only way
that direct buffers for types other than �)�� can be allocated.

View buffers are allocated by the methods:

class ByteBuffer extends Buffer
{
CharBuffer asCharBuffer();
DoubleBuffer asDoubleBuffer();
FloatBuffer asFloatBuffer();
IntBuffer asIntBuffer();
LongBuffer asLongBuffer();
ShortBuffer asShortBuffer();

}

When a view buffer is allocated, changes to the shared data in either buffer are
mirrored in the other. The two buffers’ ���, !�������, and ����� are independent.
The new ��� is undefined; the new !������� is zero; and the new ����� and �!�$
��) are initially equal to the amount of data remaining in the source buffer, ad-
justed for the new datatype length.

This means dividing by two for ��� or �����; dividing by four for ��� or ����; dividing by
eight for ������ or ���
.

A view buffer is direct if and only if it was allocated from a direct byte buffer, and
read-only if and only if it was allocated from a read-only byte buffer.

The use of view buffers can be demonstrated by example. A C���>����� view of
a >)��>����� can be used to receive large arrays of floats from a channel:

94 ���
���������	������������

ByteBuffer byteBuffer = ByteBuffer.allocate(…);
channel.read(byteBuffer);
byteBuffer.flip();
FloatBuffer floatBuffer = byteBuffer.asFloatBuffer();
float[] floats = new float[FloatBuffer.remaining()];
floatBuffer.get(floats);

This is efficient, particularly if the byte buffer is a direct buffer: the array of floats
is received and copied exactly once, in the last line of the example. We can’t im-
prove on this: the data has to get into the " �� some time, and doing it with a bulk
channel operation is the most efficient way to do it.

The converse operation—writing float data—is more problematic. We need a
>)��>����� to perform channel I/O, and as we saw in section 4.3.10, >)��>�����
doesn’t have bulk methods for non-byte data. We could use the one-at-a-time
>)��>�����!���C���-����3 method:

float[] floats = new float[] {…};
ByteBuffer byteBuffer = ByteBuffer.allocate(…);
for (int i = 0; i < floats.length(); i++)
byteBuffer.putFloat(floats[i]);

byteBuffer.flip();
channel.write(byteBuffer);

This solution is slow, which rather defeats the purpose of using new I/O at all.
We can put the float data in bulk into a C���>����� easily enough:

float[] floats = new float[] {…};
FloatBuffer floatBuffer = FloatBuffer.wrap(floats);

However we still need a >)��>����� to perform channel I/O, and no methods are
provided to convert a C���>����� into a >)��>�����.7 View buffers provide the so-
lution: construct the C���>����� as a view of a >)��>����� and put the data in bulk
into the float buffer, whose data is mirrored in the underlying byte buffer:

float[] floats = new float[] {…};
ByteBuffer byteBuffer = ByteBuffer.allocate(…);
FloatBuffer floatBuffer = byteBuffer.asFloatBuffer();
floatBuffer.put(floats);
floatBuffer.flip();

This is still inadequate. As we saw in section 4.3.10, the !������� and ����� of these
buffers are independent, so although the data we put into the float buffer is mir-

7. as at "�� 1.5. The feature has been requested.

���������� 95

rored in the byte buffer, the !������� and ����� are not: in fact, the byte buffer still
appears to be empty. We need to adjust the !������� and ����� of the byte buffer to
agree with those of the float buffer, taking the different datatype lengths into ac-
count. We can avoid hardwiring the datatype lengths into this calculation by us-
ing the ratio of the respective capacities of the byte buffer and float buffer as the
datatype-length ‘factor’, as shown below:

// continuing on from previous block …
int factor =
byteBuffer.capacity()/floatBuffer.capacity();

int byteBufferLimit = floatBuffer.limit()*factor;
byteBuffer.limit(byteBufferLimit);
channel.write(byteBuffer);

because the ratio between the capacities is the inverse of the ratio between the
datatype lengths. Clearly some sort of �)�������?� method seems to be required
to restore the relationship between the !������� and ����� of a view buffer and its
underlying buffer.

A helper class with a generic >������!�)�������?� method is shown in
Example 4.1.

import java.nio.*;

public final class Buffers
{
private Buffers() {} // non-constructable

/**
 * Synchronize position and limit of <code>target</code>
 * with those of its view buffer <code>view</code>,
 * taking into account datatype item size differences.
 *
 * @param view source buffer, e.g. FloatBuffer
 * @param target the ByteBuffer underlying the view.
 */

public static void synchronize(final Buffer view,
ByteBuffer target)

{
int factor = target.capacity()/view.capacity();
target.limit(view.limit()*factor);
target.position(view.position()*factor);

}
}

45�����
�.� >������!�)�������?� helper method

The completed bulk output example is shown in Example 4.2.

96 ���
���������	������������

float[] floats = new float[] {…};
ByteBuffer byteBuffer = ByteBuffer.allocate(…);
FloatBuffer floatBuffer = byteBuffer.asFloatBuffer();
floatBuffer.put(floats);
floatBuffer.flip();
Buffers.synchronize(floatBuffer, byteBuffer);
channel.write(byteBuffer);

45�����
�.� Bulk output of ����N O (improved)

9,8,72 "��������
��'��
�

Buffers are not safe for use by multiple threads unless appropriate synchroniza-
tion is performed by the threads, �,�, by synchronizing on the buffer itself.

�.� ���%,����	��
�#$

The normal Java I/O mode is ��������: input-output blocks the calling thread
from further execution until a non-empty data transfer has taken place. Satisfy-
ing the non-emptiness rule may involve waiting on an external data source or
sink to produce or consume data respectively.

New I/O channels provide ���$�������� input-output, which has no non-emp-
tiness rule, and therefore never needs to wait on an external data source or sink.

9,9,7 ���!���

The fundamental purpose of non-blocking I/O is to avoid blocking the calling
thread, so that it can do something else useful instead of just waiting for data to
arrive or depart. This means that one endpoint (�,�, server or client thread) never
blocks awaiting an action by the other endpoint (�,�, client or server thread). For
example, it allows a network client to be written to a message-driven model rather
than an ��� (remote procedure call) model.

Another advantage is that a single thread can handle multiple tasks (�,�, multi-
ple non-blocking connections) rather than having to be dedicated to a single net-
work connection: this in turn economizes on threads, and therefore memory; or,
conversely, it allows a given number of threads to handle much more than that
number of network connections.

9,9,2 �'���������������������������

Channels are initially created in blocking mode, and streams—even those with
channels—can only be operated in blocking mode.

A blocking ��
 operation blocks until ����������� data is available, although
not necessarily all the data requested. It may transfer less than the data count

���������� 97

requested, �,�, may return a lesser value. A read from a network stream or chan-
nel blocks while there is no data in the socket receive-buffer. As soon as �)
amount of data becomes available in the socket receive-buffer, it is transferred
and execution is resumed. If no data is available, a blocking read may therefore
have to wait for the other end to send something.

A blocking 	���� operation blocks until ����������� data can be transferred,
although not necessarily all the data requested. A write operation on a channel
may transfer less than the data count requested, �,�, may return a lesser value,
although it always transfers something, �,�, never returns zero.8 A write on a net-
work channel blocks until ����������� socket send-buffer space is available. As
soon as space becomes available, that amount of data is transferred and execu-
tion is resumed. As send-buffer space depends on space in the receive buffer at
the other end, a blocking write may therefore have to wait for the other end to
create space in its receive buffer by reading some data out of it.

The blocking ������� operation is described for ��� channels in section 5.2.1.
The connect operation for ��� channels never blocks, as described in
section 10.1.3.

A channel in blocking mode cannot be used with a �������� as described
in section 4.5.9

9,9,8 �'������������������$������������

���$�������� I/O can only be performed with "�� 1.4 channels.
A non-blocking ��
 operation—unlike a blocking read—may return zero, in-

dicating that no data was available. A non-blocking read on a network channel
transfers only the data, if any, that was already in the socket receive-buffer at the
time of the call. If this amount is zero, the read transfers no data and returns
zero.

A non-blocking 	���� operation—unlike a blocking write—may return zero,
indicating that no space was available. A non-blocking write operation on a net-
work channel transfers only as much data as could currently be appended to the
socket send-buffer at the time of the call. If this amount is zero, the write trans-
fers no data and returns zero.

The channel ������� operation for non-blocking ��� channels is described in
section 5.2.2, and for ��� channels, both blocking and non-blocking, in
section 10.1.3. A channel in non-blocking mode can be used with a �������� as
described in section 4.5.

8. However, write operations on ������ block until the transfer is complete or an exception
occurs. This is implemented via an internal loop, and is implied by the fact that the
+����������!'���� methods all return void: an incomplete transfer cannot be notified to the
calling application.
9. Otherwise an #���
�>���"��
����	�������� is thrown. This may surprise Berkeley Sockets
programmers, who can use ������56 on both blocking and non-blocking sockets.

98 ���
���������	������������

9,9,9 ���'�
�

Non-blocking I/O can be performed with any channel derived from
���������������: these include ��
��������, :���!���"������,
:���!������������, ��� �����"��������, and ���"��������, as shown in
Table 4.1. The blocking mode of such a channel is set and tested via the methods:

class SelectableChannel implements Channel
{
// Test and set blocking mode
boolean isBlocking();
SelectableChannel configureBlocking(boolean block)

throws IOException;
}

Non-blocking I/O is performed with the ��� and '���� methods defined
in section 4.2.2. The only difference from blocking mode is that in non-blocking
mode they return zero, indicating that no data was transferred, if the channel
wasn’t ready for the operation, �,�, if no incoming data has been buffered for a
read operation, or no outgoing buffer space is available for a write operation.

This is not the only reason these methods can return zero: they also do so if no actual
transfer was requested, �,�, if there is no room in the buffer when reading, or nothing to
write when writing, in both cases because !������� = �����. This can occur in blocking
mode as well as non-blocking mode.

If a channel is in non-blocking mode and a stream I/O operation is attempted on
it, an #���
�>���"��
����	�������� is thrown, as shown in section 4.2.4.

�. 7���	���5	��

�����!��%�
���� allows a thread to manage multiple I/O channels at the same
time by means of event notifications: the thread registers the channels of interest
with a ‘selector’ object and then calls a selector method which returns when one
or more channels is is ready for an I/O operation, or after a specified timeout
period.

Multiplexing is somewhat like being directly driven by hardware interrupts
from the network controller.

The difference between managing a single channel in blocking mode and
managing (multiplexing) multiple channels is illustrated in Figure 4.7.

For some reason which Sun have not made clear, multiplexing must be used
in conjunction with non-blocking I/O.10

���������� 99

Multiplexing is familiar to Berkeley Sockets and 	����� programmers as the ������()
API, and to Unix System V ‘streams’ programmers as the !���() API.

9,4,7 �����!��%�����
���������)

Multiplexing provides the scalability in the Java new I/O subsystem. Instead of
using blocking I/O, requiring one thread per channel, an application can use
non-blocking I/O and multiplexing to manage multiple channels in a single
thread. This approach scales much better when the number � of of simultane-
ously open channels is large, say in the hundreds or thousands, because it re-
duces the number of threads required from � to ��� where � is the number of
channels managed by each thread. � can be adjusted within the application as
required to suit its mix of resource constraints and its requirements for respon-
siveness.

10. Up to the latest "�� 1.5. This semantic restriction seems unnecessary. All Java platforms I am
acquainted with support multiplexing in blocking mode via the Berkeley Sockets ������() ��	. The
	����� ?� �)��������56 and ?� /����������56 APIs require non-blocking mode, and one of
these seems to be used by the "�� 1.4 Win32 implementation, which if true would explain both the
semantic restriction and BugId 4628289 on the Bug Parade. Fixing the bug would also appear to
make it possible to remove the semantic constraint.

9	����
�.!. Blocking I/O ��, multiplexing

Wait for input
on one channel

Wait for input
on any of �
channels

Process up to �
input events

Process one
input event

100 ���
���������	������������

We will see server and client architectures for exploiting multiplexing in
Chapter 12.

9,4,2 ����������������!��%���

In Java, I/O multiplexing is done with the �������� class, the ���������/�) class,
and channel classes derived from ���������������.

As shown in Figure 4.1, and as we have just seen in section 4.4, classes de-
rived from ��������������� include ��
��������, :���!���"������,
:���!������������, ��� �����"��������, and ���"��������.

9,4,8 0'���
����������

The heart of I/O multiplexing is the �������� class, which exports methods for
opening and closing a selector:

class Selector
{
static Selector open() throws IOException;
boolean isOpen();
void close() throws IOException;

}

Once a selector is obtained, any selectable channel can be ���������
 with it:

class SelectableChannel extends Channel
{
boolean isRegistered();
SelectionKey register
(Selector selector, int operations)

throws ClosedChannelException;
SelectionKey register(Selector selector, int operations,

Object attachment)
throws ClosedChannelException;

}

The ��������� parameter specifies the ������������: a bit-mask of the I/O opera-
tions of interest, whose values are defined in the ���������/�) class:

class SelectionKey
{
static final int OP_ACCEPT;
static final int OP_CONNECT;

���������� 101

static final int OP_READ;
static final int OP_WRITE;

}

For example, registering for +:9D	$� and +:9KD#;	 can be done thus:

Selector sel = Selector.open();
channel.register
(sel, SelectionKey.OP_READ|SelectionKey.OP_WRITE);

The valid values for the ��������� parameter can be obtained from the channel
via the ���+�� method:

class SelectableChannel extends Channel
{
int validOps();

}

However you should ��� code as follows:

Selector sel = Selector.open();
channel.register(sel, channel.validOps());

especially in a server. A server is not interested in +:9�+&&	�; and should not
register for it. The ���+�� of a ���"�������� always include +:9�+&&	�;�
even for a ���"�������� resulting from ��� �����"��������!�����. Such a
���"�������� is already connected and +:9�+&&	�; will therefore always be
ready. This will cause ��������!������ to return immediately and probably hard-
loop. Further, in either clients or servers, as discussed in in section 5.3, you
should never register for +:9�+&&	�; and +:9KD#;	 at the same time, or for
+:9$��	:; and +:9D	$� at the same time.

Selectable I/O operations are discussed further in section 4.5.4. Selection keys
are discussed in section 4.5.5. The optional �������� parameter is described in
section 4.5.6.

A channel can be registered with an empty ������������, �,�, an ��������� param-
eter of zero. Such a channel is never selected. The interest set of a channel’s reg-
istration key can be modified at any time by calling the ���������/�)!��������+��
method. This affects the ��%� selection operation discussed in the next subsec-
tion. On some platforms this method is synchronized against concurrent execu-
tions of ��������!������ and friends, and it has been found best to call it only from
the same thread that calls ��������!������.

102 ���
���������	������������

9,4,9 ���������������!�������

Registering a channel means wanting to be notified when the channel becomes
ready for one or more types of I/O operation. A channel is ��
) for an I/O opera-
tion if the operation 	���
���������� if performed in blocking mode, or, in non-
blocking mode, if it 	���
 ��� return a zero, false, or null result.11 It might return
a result indicating success, or some failure condition such as end-of-stream; or it
might throw an exception.

Obviously, ‘would not block’, ‘would not return zero’ etc. can only mean
‘would not have blocked, returned zero, etc ������'
�������%�����
����'��������'�
��
�������'�
��������
’. Computers cannot predict the future. If another thread
operates on the socket immediately after the ������ call, the ready status resulting
from the ������ may no longer be valid. Robust network programs must deal cor-
rectly with zero, false, or null results from I/O operations, even if the ������
method selected them as ready.

The selectable I/O operations and their meanings when ready are specified in
Table 4.4.

Further information about these operations is given for ��� in Table 5.1, and
for ��� in Table 10.1.

9,4,4 ������������)�

The result returned by ���������������!��
����� is a ���������/�), which is sim-
ply a representation of the registration. This design allows a channel to be regis-
tered with more than one selector: each registration produces a unique registra-
tion key, which can be used to cancel the registration without affecting other
registrations of the same channel with other selectors.

The ���������/�) class exports the manifest constants shown in section 4.5.4,
and exports the following methods:

11. Berkeley Sockets and 	����� programmers will recognize this as the �����,����

and �������,���� conditions respectively.

��,��
�.� Selectable I/O operations

���� ���	���������!�

+:9$��	:; ��� �����"��������!����� would not return null.

+:9�+&&	�; ���"��������!������������� would not return false.

+:9D	$� A ��� operation on the channel would not return zero.

+:9KD#;	 A '���� operation on the channel would not return zero.

���������� 103

class SelectionKey
{
// return the channel whose registration produced this key
SelectableChannel channel();

// return the selector which produced this key
Selector selector();

// return the operations-of-interest set
int interestOps();

// return the set of operations which are now ready
int readyOps();

boolean isAcceptable(); // OP_ACCEPT ready
boolean isConnectable(); // OP_CONNECT ready
boolean isReadable(); // OP_READ ready
boolean isWritable(); // OP_WRITE ready

// Alter the operations-of-interest set
SelectionKey interestOps(int ops);

// cancel the registration
void cancel();
boolean isValid(); // ⇒ not closed/cancelled

// get/set the attachment
Object attachment();
Object attach(Object object);

}

9,4,: ������������)����'�����

A selection key ‘attachment’ essentially provides an application-defined context
object for the key and channel. It is an arbitrary object which remains associated
with the selection key which results from the registration, and which can be set,
unset, and retrieved subsequently:

class SelectionKey
{
Object attachment(); // get the attachment
Object attachment(Object object); // set the attachment

}

The �������� setter method attaches an object to the key in the same way as the
third parameter to ���������������!��
����� described above. An object can be
detached by attaching either another object or null. The method returns the pre-
vious attachment if any, otherwise null.

104 ���
���������	������������

9,4,; 0'����������!������

The primary multiplexing operation is the ������ method of the �������� class,
which comes in three forms:

class Selector
{
int select() throws IOException;
int select(long timeout) throws IOException;
int selectNow() throws IOException;

}

These methods select channels which are ready for at least one of the I/O opera-
tions in their interest set (defined in section 4.5.3). For example, a channel regis-
tered with an interest set of {+:9D	$�} is selected when a read operation would
not return zero; a channel registered with an interest set of {+:9KD#;	} is ready
when a write operation would not return zero; a channel registered with an inter-
est set of {+:9D	$�, +:9KD#;	} is ready when ���'�� a read method or a write
method would not return zero.

The ������&�' method does not block. The ������ method with no arguments
blocks until at least one channel is selected or the selector is woken up asynchro-
nously with the ��������!'"��� method. The ������-���
 �������3 method
blocks until at least one channel is selected, the selector is woken up asynchro-
nously with the ��������!'"��� method, or the timeout period expires, where
������� is either a positive number of milliseconds or zero, indicating an infinite
wait as in ������ with no arguments.

The select operation adds the keys of channels which have become ready to the
�������
$��)����, and returns the number of channels which have become ready, �,�,
the number of keys selected: this may be zero.

The set of registered keys and the current set of selected keys�are returned by
the methods:

class Selector
{
Set keys(); // currently registered keys
Set selectedKeys(); // currently selected keys

}

The selected channels are obtained via the selected-keys set, and can be proc-
essed individually as shown in the following example:

Selector selector = Selector.open();
channel.register(selector, channel.validOps());
int selectedCount = selector.select();
Iterator it = selector.selectedKeys().iterator();

���������� 105

while (it.hasNext())
{
SelectionKey key = (SelectionKey)it.next();
it.remove();
SelectableChannel selCh = key.channel();
if (key.isAcceptable())
handleAcceptable(key); // not shown …

if (key.isConnectable())
handleConnectable(key); // not shown …

if (key.isReadable())
handleReadable(key); // not shown …

if (key.isWritable())
handleWritable(key); // not shown …

}

Note that the application must remove each ���������/�) from the selected-key
set, otherwise it will show up again next time after ��������!������ or
��������!������&�' returns, because the selector never clears the selected-keys
set. As long as this practice is followed, the size of the selected-key set is the same
as the value returned by the select operation:

��������!������-S3�11���������!��������/�)�-3!��?�-3 <�=
�. >

��������!������&�'-3�11���������!��������/�)�-3!��?�-3 <�=
�.�>

Leaving a key in the selected-key set would only make sense if the key wasn’t processed
on this iteration, �,�, the associated I/O operation was skipped for some reason; this
might occur if one iteration was devoted solely to I/O and a separate iteration with a
different priority was devoted to accepting connections. However, in such a case it
would make more sense to use multiple selectors.

The selected-key set is !�����) immutable. Although keys can be removed from
the selected-key set as shown, keys cannot be explicitly added to it. Only
��������!������ and ��������!������&�' may add keys to the selected-key set. If the
application attempts to do so, an E����������+�������	�������� is thrown.

9,4,C �����������
���������

If the select operation returns a result of zero, one or more of the following have
occurred:

(a) The timeout specified has expired.

(b) The selector was woken up asynchronously (see section 4.6.4).

(c) A registered key was cancelled asynchronously (see section 4.6.5).

106 ���
���������	������������

When the selection result is zero, the set of selected keys is empty, so the follow-
ing invariant holds:

selector.selectedKeys().size() == 0;

and nothing of interest has occurred to any of the registered channels. ����
����)
�� we can assume no asynchronous operations, the channels have all timed out.
In this case, the set of timed-out channels is the entire set of registered channels,
which is available via the set of registered keys returned by the "�)� method, and
can be processed for timeout individually as shown below.

int selectedCount = selector.select(TIMEOUT);
if (selectedCount > 0) // process ready channels
{
Iterator readyKeys =
selector.selectedKeys().iterator();

while (readyKeys.hasNext())
{
SelectionKey readyKey =
(SelectionKey)it.next():

it.remove();
SelectableChannel readyChannel = readyKey.channel();
// ‘readyChannel’ is ready …

}
}
else // timeout
// Precondition: no asynchronous operations
{
// process idle channels
Iterator it = selector.keys().iterator();
while (it.hasNext())
{
SelectionKey key = (SelectionKey)it.next();
SelectableChannel idleChannel = key.channel();
// ‘idleChannel’ has timed out - process it …

}
}

This technique is simple but flawed. First, the precondition may not hold: the
assumption of no asynchronous operations may be invalid. Second, the selection
operation may not return zero frequently enough for timely processing of idle
channels. If even one channel become ready in each timeout period, the timeout
block is ����� executed, and any timeouts on the remaining channels are never
processed.

���������� 107

We need a technique which works for any return value of ��������!������, and
which allows for asynchronous wakeups. In general, we cannot assume that the
selection operation has blocked for the entire timeout period. We must keep
track of elapsed time explicitly:

long timeout = 180*1000L;
long startTime = System.currentTimeMillis();
int selectCount= selector.select(timeout);
long endTime = System.currentTimeMillis();

As ��������!������ may not have returned zero, we cannot assume as we did be-
fore that all registered channels were idle. The idle channels are obtained from
the set-algebraic difference of the set of registered keys and the set of selected
keys, as follows:

// copy registered keys
Set idleKeys = new HashSet(selector.keys());
// subtract ready keys
idleKeys.removeAll(selector.selectedKeys());
// now iterate over idle keys,
// calling SelectionKey.channel() on each …

Obviously we had to copy the registered-key set to form the set of idle keys, rather
than modifying the set directly. In fact the registered-key set returned by
��������!"�)� is immutable: the only way to remove a key from the set is to cancel
its registration with ���������/�)!�����.

Note also that the registered-key set is not thread-safe, and therefore neither is
the clone; neither is the selected-key set; neither is a B�����. We can make a
thread-safe set from any set if necessary:

idleKeys = Collections.synchronizedSet(idleKeys);

If we are just using timeouts to detect channels which have gone idle for any
reason, without being interested in strict enforcement of timeout periods, �,�, if
we don’t mind idle channels being unprocessed for longer periods than the time-
out, we could use an increased timeout value and an ‘idle-threshold’ equal to the
original timeout:

long threshold = 60*1000L;
long timeout = threshold*3;

and process channels which have remained idle for the threshold period:

108 ���
���������	������������

long elapsedTime = endTime − startTime;
if (elapsedTime > threshold)
{
// …

}

The complete selection process with this method of timeout processing looks
something like this:

static final long THRESHOLD = 60*1000L;// 60 seconds
static final long TIMEOUT = THRESHOLD*3;
Selector selector = Selector.open();
// …

long startTime = System.currentTimeMillis();
int readyCount = selector.select(TIMEOUT);
long endTime = System.currentTimeMillis();
long elapsed = endTime − startTime;

// process ready channels
Iterator readyKeys = selector.selectedKeys().iterator();
while (readyKeys.hasNext())
{
SelectionKeyreadyKey = (SelectionKey)it.next():
it.remove();
SelectableChannelreadyCh = readyKey.channel();
// ‘readyCh’ is ready.
// …

}

if (elapsed >= THRESHOLD)
{
// Process idle channels
Set idleKeys = (Set)selector.keys().clone();
idleKeys.removeAll(selectedKeys);
Iterator it = idleKeys.iterator();
while (it.hasNext())
{
SelectableChannel idleCh =
(SelectableChannel)it.next();

// ‘idleCh’ has been idle for >= THRESHOLD ms …
}

}

The threshold technique is still not really good enough. The ������ operation may
still return too frequently for the threshold ever to to be triggered. We can tune
the timeout/threshold ratio to reduce this problem, but we cannot eliminate it. If

���������� 109

we must process idle channels with 100% reliability, or enforce timeouts strictly,
we need a solution along these lines:

(a) Each registered channel is associated with an idle-time, initially zero.

(b) After each selection operation, clear the idle-time of all ��
) channels, and
scan all ���$��
) channels adding the elapsed time calculated above to their
idle-time: a channel has timed out if its idle-time equals or exceeds the time-
out value.

The elaboration of this scheme is left as an exercise for the reader.

�.� ����������
�������
������	���

The design of ‘new I/O’ allows for multiple threads to operate on channels simul-
taneously. A channel may be read by multiple threads simultaneously; may be
written by multiple threads simultaneously; and may be simultaneously read to
and written from. A selector may be operated on by multiple threads simultane-
ously. I/O operations on certain channels can be interrupted. Selection opera-
tions can be interrupted or woken up.

9,:,7 �������������
�����
�	������

Multiple threads can read from and write to the same channel.

If a concurrent read operation is in progress on a channel, a new read opera-
tion on the channel blocks until the first operation is complete. Similarly, if a
concurrent write operation is in progress on a channel, a new write operation on
the channel blocks until the first operation is complete. In both cases, this occurs
����
���� of the blocking mode of the channel, because the block is enforced by
Java object synchronization rather than by the underlying I/O system.

A channel may or may not support concurrent reading and writing: if it does, a
read operation and a write operation may or may not proceed concurrently (with-
out blocking), depending on the type of the channel.12

However, as we saw in section 4.3.12, buffers are not thread-safe. Concurrent
I/O operations on a channel can only use the same buffer if appropriate synchro-
nization is performed, �,�, by synchronizing on the buffer itself.

12. Socket channels support concurrent reading and writing without blocking; file channels
support it with blocking which is partially platform-dependent.

110 ���
���������	������������

9,:,2 �������!��

As described in section 4.2.2, a thread which is blocked in a read or write opera-
tion on a channel which implements the #������������������ interface may be
interrupted by calling the ;����!��������� method.

A thread which is blocked in a select operation on a �������� may be inter-
rupted by calling the ;����!��������� method.

The semantics of interrupts for #������������������� and ��������� are differ-
ent: see Table 4.5.

9,:,8 �)��'��������������

An interruptible channel can be closed asynchronously. Any thread blocked in a
read or write operation on the closed channel is thrown an
$�)��������������	��������. If any selection operation including the closed
channel is in progress, see section 4.6.5.

Similarly, if a selector is closed asynchronously, any thread blocked in a select
operation on a �������� behaves as though woken up as described in
section 4.6.4, with the exception that the closure can be detected by a ���� result
from ��������!��+���.

The semantics of asynchronous closure for #������������������� and
��������� are different: see Table 4.5.

9,:,9 ?���!

A selection operation can be ‘woken up’ asynchronously by the ��������!'"���
method. If any threads are concurrently blocked in the selection operation on
that selector, the thread which ����� blocked returns immediately. Otherwise,
'"��� causes the ��%� selection operation to return immediately, regardless of
timeout value, including ��������!������&�' (which does not block).

The effect of '"��� is cleared by any selection operation including
��������!������&�'. To express this in Java, the following returns immediately:

selector.wakeup();
selector.select(timeout);// no block here

but the following blocks:

selector.wakeup();
selector.selectNow();
selector.select(timeout);// blocks here

(assuming no concurrent operations on the selector). In either case, the return
value of the selection operation and the selected-key set of the selector reflect the
status of the operation at the time it returned: in particular, the return value may

���������� 111

be zero or non-zero and the selected-key set may be correspondingly empty or
non-empty. If the return value is non-zero, there is ���) for the woken-up
thread to detect that '"��� was called; if the return value is zero, the woken-up
thread can detect the wakeup by comparing the elapsed time to the specified
timeout value, as described in section 4.5.8: if ��!��
 < �������,13 the selector has
been woken up.

Invoking the '"��� method more than once between selection operations
has the same effect as invoking it once, �,�, it sets a boolean status: this status is
cleared by any selection operation.

For the remaining semantics of the 	���! operation, see Table 4.5.

13. That is, if ��!��
 is �����������) less than �������, allowing for granularity in the timers,
scheduling delays, ���. For the same reasons, if no channels become ready and no asynchronous
selector operations occur, the elapsed time will normally be ������ the specified timeout value,
depending on the characteristics of the underlying platform.

��,��
�. Semantics of asynchronous operations

&���%	���
����	�
�����������
�
����	� ����	��

��� or '���� on an
#������������������

;����!��������� The channel is closed.
������!��+��� == ����.
The blocked thread is thrown a
������>)#��������	��������.a

;����!��#���������� 11 ����.

����� on an
#������������������

The channel is closed.
������!��+��� 11 ����.
The blocked thread is thrown an
$�)��������������	��������.
;����!��#���������� 11 ����.

��������!������b ;����!��������� ��������!'"��� is called.
The selector is not closed.
��������!��+��� 11 ����.
The blocked thread returns
immediately.
;����!��#���������� 11 ����.

��������!����� ��������!'"��� is called.
The selector is closed.
��������!��+��� 11 ����.
The blocked thread returns
immediately.
;����!��#���������� 11 ����.

112 ���
���������	������������

9,:,4 ����������)��
����������

While a select operation is in progress, all sort of actions relevant to it can be
performed concurrently: channels can be registered or closed, or their registra-
tions with the selector can be modified or cancelled. This is described at length in
the "�� online documentation in terms of mechanism: the following describes
the semantics.

A new channel may be ���������
 with a �������� while a select operation is in
progress. Similarly, the registration can be ��
����
, �,�, the interest-operation set
of a selection key can be changed, while a select operation is in progress. In both
cases, the change is not taken into account in the current select operation, but
becomes effective in the ��%� select operation.

A registration, �,�, a selection key, may be �������
, or its channel closed, while
a select operation is in progress. Such a key will not be included in the selected-
set or counted in the return value of the select operation. The select operation
may return a zero value: as we saw in section 4.5.8, this cannot safely be taken to
imply that the timeout period has expired.

However, regardless of these semantics of the selection operation itself, a se-
lection key may be cancelled or its channel closed at any time, so the presence of
any key in any of a selector’s key sets cannot be taken to imply that the key is valid
or that its channel open. Applications which perform asynchronous processing
must be careful to synchronize their operations on key sets, and to check the
���������/�)!��(��� condition (which implies the ������!��+��� condition)
when processing selection keys. For example:

int selectedCount = selector.select();
Set selectedKeys = selector.selectedKeys();
// Synchronize on the set of selected keys.

��������!'"��� The selector is not closed.
��������!��+��� 11 ����.
The first of any blocked threads
returns immediately with
;����!��#���������� 11 ����.
If there are no blocked threads, the
��%� select operation returns
immediately.

a. N.B. not an #����������#+	�������� or an #����������	��������, which may surprise.
b. Although �������� supports interrupt and asynchronous-close semantics, it does ��� implement
#������������������. Firstly, it isn’t a ������. Second, its semantics for these operations are dif-
ferent, as shown in the table.

��,��
�. Semantics of asynchronous operations (continued)

&���%	���
����	�
�����������
�
����	� ����	��

���������� 113

// Any asynchronous operations on the selector or set
// must also synchronize on the set …
synchronized (selectedKeys)
{
Iterator it = selectedKeys.iterator();
while (it.hasNext())
{
SelectionKeykey = (SelectionKey)it.next();
it.remove();
// Check for asynchronous close or cancel
if (!key.isValid())
continue;

// …
}

}

As remarked in section 4.5.4, if parallel operations on a channel are in progress,
it cannot be assumed that a channel is ready even though a selector has selected
it: the ready state may already have been dealt with by another thread between the
return from ��������!������ and the processing of the channel. Processing of
ready channels must be robust—must cope with the possibility of a channel read
or write returning zero (�,�, doing nothing), or an accept or connect operation
returning null.

9,:,: win 82��
�jdk �7,9,3

Multiplexing in "�� 1.4.0 for 	��� platforms is broken:

(a) ��������!������ doesn’t wake up every time a channel becomes ready, only
the first time.

(b) Sometimes a selection key is reported as being updated when it is really just
a key already in the selected set that is still ready.

(c) There is a limit of 63 registered channels per ��������.

See the Java Developer Connection Bug Parade, bug IDs 4469394, 4530007,
and 4503092. Some of these problems are corrected in "�� 1.4.1, and the feature
appears to work as advertised in 1.4.2 and subsequent versions of the "�� .

�.! 45����	���
	�
��
�#$

The exceptions that can arise during operations on channels and buffers, and
their meanings, are listed in Table 4.6.

114 ���
���������	������������

��,��
�.� Exceptions in new I/O

���� ���	�

$����)���������	�������� Thrown by ���"��������!������� if the
channel is already connected.

U

$�)��������������	�������� Thrown by any blocking operation on a
channel when it is closed by another
thread.

C

>�����+ �����'	�������� Thrown by any relative >�����!���
operation if the buffer’s limit is reached.

U

>�����E�������'	�������� Thrown by any relative >�����!
��
operation if the buffer’s limit is reached.

U

��������/�)	�������� Thrown by any attempt to use a
cancelled ���������/�).

U

������������
	�������� Thrown when a character encoding or
decoding error occurs.

C

������>)#��������	�������� Thrown by a blocking operation on a
channel if the invoking thread is
interrupted by another thread with
;����!���������. The channel is now
closed, and ;����!��#���������� is true
of the thread which receives the
exception. Not thrown by
C���������!���": see
C������"#�����������	��������.

C

������������	�������� Thrown by any channel operation if the
channel is already closed, or by
���"��������!'���� if the socket has
been shutdown for output, or
���"��������!��� if the socket has
been shutdown for input.a

C

��������������	�������� Thrown by any method of �������� if the
selector has been closed.

U

����������:�����
	�������� Thrown by ���"��������!������� if the
channel already has a pending
connecting.

U

C������"#�����������	�������� Thrown by C���������!���" if the
invoking thread is interrupted by
another thread (with ;����!���������);
;����!��#���������� is true of the thread
which receives the exception.

C

���������� 115

#���
�>���"��
����	�������� Thrown by any blocking-mode-specific
operation on a channel if the channel is
not in the correct mode, �,�, ��� and
'���� on a stream obtained from the
channel if the channel is in non-blocking
mode.

U

#���
�������&��	�������� Thrown when using a charset name of
illegal format, as defined in the "��
documentation.

U

#���
���������	�������� Thrown by ���������������!��
����� if
the channel and selector weren’t created
by the same ��������:�� ����.b

U

#� �����"	�������� Thrown by any reset operation on a
>����� if the mark is undefined.

U

��������#����	�������� Thrown when an input byte sequence is
not legal for a given charset, or an input
character sequence is not a legal 16-bit
Unicode sequence.

C

&�����������:�����
	�������� Thrown by ���"��������!�������������
if no connection is pending, �,�, if
���"��������!������� has not been
called successfully.

U

&��D�����������	�������� Thrown by any ��� method on a
channel not opened for reading.

U

&��K������������	�������� Thrown by any '���� method on a
channel not opened for writing.

U

&��J��>����	�������� Thrown by any I/O operation on a
��� �����"�������� which has not been
bound to a local port.

U

&��J�����������	�������� Thrown by any I/O operation on a
���"�������� which has not been
connected.

U

+ �������
C������"	�������� Thrown by C���������!���" or
C���������!��)���" if the specified
region overlaps a region which is either
already locked by the same " �� or which
another thread in the same " �� is
already waiting to lock.

C

��,��
�.� Exceptions in new I/O (continued)

���� ���	�

116 ���
���������	������������

In this table, the right-hand column has ‘C’ for checked exceptions and ‘U’ for
unchecked exceptions (�,�, exceptions derived directly or indirectly from
� !��
!D������	��������, which are not checked by the Java compiler as being
caught or thrown by methods in which they can occur).

D��+��)>�����	�������� Thrown by any ���, ��� or ������
operation, �,�, any operation which
mutates the content as opposed to just
the ���, !�������, or �����, on a >�����
which is read-only.

U

E��������������	�������� Thrown when an input character (or
byte) sequence is valid but cannot be
mapped to an output byte (or character)
sequence.

C

E������ ��$������	�������� Thrown by any attempt to use an
unresolved socket address for a network
operation (�,�, ���� or �������, as
opposed to a local operation).

U

E����������$������;)��	�������� Thrown by any attempt to bind or
connect to a socket address of an
unsupported type.

U

E����������������	�������� Thrown when no support is available for
a requested charset.

U

a. This may surprise Berkeley Sockets and 	����� programmers, who are used to read opera-
tions returning an ��- condition if the socket has been shutdown for input.
b. This provider class is found in the package � !���!�������!���. This exception can only hap-
pen if you are using a non-default �	� provider. Providers and Service Provider Interfaces of all
kinds are for service implementors and are beyond the scope of this book.

��,��
�.� Exceptions in new I/O (continued)

���� ���	�

117

��������� �������tcp

��
��	�
������� we discuss Java �	� —scalable I/O—as applied to ���.

 .� ��������
-��
���

Scalable I/O over ��� is performed with the ��� �����"�������� and
���"�������� classes we encountered in passing in section 4.2.1.

Like all channels, these channels are intially created in blocking mode.

4,7,7 ��!�������������

The following Java import statements are assumed in the examples throughout
this chapter.

import java.io.*;
import java.net.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.channels.spi.*;
import java.util.*;

����� �����������	����

The ��� �����"�������� class provides channel I/O for server sockets:

class ServerSocketChannel
{
static ServerSocketChannel open() throws IOException;

118 ���
���������	������������

ServerSocket socket() throws IOException;
SocketChannel accept() throws IOException;

}

��� �����"��������� are created, and the associated ��� �����"�� can be ob-
tained, as follows:

ServerSocketChannel channel = ServerSocketChannel.open();
ServerSocket serverSocket = channel.socket();

The associated server socket is created unbound, and must be bound with the
��� �����"��!���� method described in section 3.3.7 before being used for any
network operation.

The ����� method corresponds to the method ��� �����"��!�����, with two
differences:

(a) It returns a ���"�������� rather than a ���"��!

(b) It can be executed in non-blocking mode, in which case it can return ���� if
no incoming connection is available.

We ���� use ��� �����"��������!����� rather than ��� �����"��!����� under
the following circumstances:

(a) If we are performing the accept operation in non-blocking mode, or

(b) if we intend to perform non-blocking channel operations on the accepted
socket.

����� ������	����

Similarly, the ���"�������� class provides channel I/O for sockets:

class SocketChannel
{
static SocketChannel open()
throws IOException;

static SocketChannel open(SocketAddress address)
throws IOException;

Socket socket()
throws IOException;

}

���"��������� are created, and the associated ���"�� obtained, as follows:

�������t cp 119

SocketChannel channel= SocketChannel.open(…)
Socket socket = channel.socket();

If the no-argument form of the ���� method is used, the associated socket is
created unconnected, otherwise the socket is created and connected to the re-
mote ���"��$������ specified. For example:

String host = “localhost”;
int port = 7; // echo port
SocketAddress address =
new InetSocketAddress(host, port);

SocketChannelchannel = SocketChannel.open(address);

 .� ���
�������
������	���

As we saw in section 5.1, a ���"�������� is created in blocking mode. It can be
put into non-blocking mode using:

class SocketChannel
{
SelectableChannel configureBlocking(boolean block)
throws IOException;

boolean isBlocking();
}

where ����"��
 is ���� for blocking mode and ���� for non-blocking mode.
An unconnected ��� channel can be connected to a target with the

���"��������!������� method:

class SocketChannel
{
boolean connect(SocketAddress address)
throws IOException;

boolean isConnected();
boolean isConnectionPending();
boolean finishConnect()
throws IOException;

}

The ����������� method tells whether the ���� socket has been connected to the
target yet: it doesn’t tell anything about the other end of the connection, as dis-
cussed in section 3.4.10.

The ������������:�����
 and ������������� methods are mainly used in non-
blocking mode as described in section 5.2.2.

120 ���
���������	������������

4,2,7 "����������������������

If the channel being connected is in �������� mode:

(a) The ������� method blocks until the connection is complete or has been
refused, i.e. is equivalent to calling ���"��!������� with an unspecified or
infinite timeout.

(b) The ������������� method need not be called: it returns true immediately if
the channel is connected, or throws a &�����������:�����
 if the channel
is not connected.

(c) The ������������:�����
 method never returns true.

4,2,2 ���$�����������������������

If the channel being connected is in ���$�������� mode:

(a) The ������� method immediately returns true if the connection can be
made immediately, as sometimes happens with a local connection; other-
wise, it returns false and the connection must be completed later with the
������������� method, while the connection protocol continues asynchro-
nously.

(b) The ������������� method returns true if the connection has been com-
pleted successfully; returns false if it is still pending; or throws an
#+	�������� if the connection could not be made for any reason: most com-
monly, the connection was refused by the remote target because nothing
was listening at the specified port, which is manifested as a
�������	��������!

(c) The ������������:�����
 method returns true if ������� has been called
but ������������� has not yet been called, otherwise false.1

Relating this to the ��� connection protocol, ������������� returns false and
������������:�����
 returns true until the �0�#��� segment has been received
from the server, as shown in the sequence diagram of Figure 5.1.

A simple non-blocking ��� client connect operation is illustrated in
Example 5.1.

SocketAddress address =
new InetSocketAddress(“localhost”,7);

SocketChannel channel = SocketChannel.open();
channel.configureBlocking(false);
if (!channel.connect(address))

1. That is, it does ��� try to predict the result of �������������.

�������t cp 121

{
// connection was not instantaneous, still pending
while (!channel.finishConnect())
{
// connection still incomplete: do something useful …

}
}

45�����
 .� Simple non-blocking ��� client connection

4,2,8 #�
��!������

In blocking mode, a ��� channel read blocks until ����������� data is available,
although not necessarily the amount of data requested.

In non-blocking mode, a ��� channel read never blocks. If the connection has
been closed by either end, or shutdown for reading at this end, an exception is
thrown. If data is present in the socket receive-buffer, that data is returned, up to
the amount requested or the data’s own size, whichever is smaller. If no data is
present, the operation does nothing and returns zero.

If no exception is thrown, the return value indicates how much data was read,
possibly zero.

9	����
 .�. ��� segment exchanges for non-blocking connect

��$���������
returns�����4
�����
returns ����

�������
returns

SYN/ACK

ACK

�������������
returns ����

��$���������
returns�����4
����� returns
non-����

SYN

Client Server

�������������
returns ����

122 ���
���������	������������

4,2,9 ?������!������

In blocking mode, a ��� channel write blocks until ����������� space is available
in the socket send-buffer, although not necessarily the amount of space required
by the data written.

How much space? Most ��� implementations support a ‘low-water mark’ which by de-
fault is 2KB: a write only transfers data if at least this much space is available in the send
buffer. The low-water mark, even if supported by the ��� implementation, cannot be
controlled from Java as at "�� 1.5.

In non-blocking mode, a ��� channel write never blocks. If the connection has
been closed by either end, or shutdown for writing at this end, an exception is
thrown. If space is available in the socket send-buffer, data is transferred up to
the amount specified or space available, whichever is less. If space is unavailable
the operation does nothing and returns zero.

If no exception is thrown, the return value indicates how much data was writ-
ten, possibly zero.

A simple non-blocking ��� I/O sequence is illustrated in Example 5.2.

ByteBuffer buffer = ByteBuffer.allocate(8192);
SocketChannel channel;// initialization as in Example 5.1
channel.configureBlocking(false);
buffer.put(…);
buffer.flip();
while (channel.write(buffer) == 0)
; // do something useful …

buffer.clear();
while (channel.read(buffer) == 0)
; // do something useful …

45�����
 .� Simple non-blocking ��� client I/O

As the comments say, the programs should be doing useful work, or at least
sleeping, instead of spinning mindlessly while the connection is incomplete in
Example 5.1 or the I/O transfers return zero in Example 5.2.

4,2,4 �������!������

A SocketChannel is closed via the close method:

class SocketChannel
{
void close() throws IOException;

}

�������t cp 123

However, the documentation of ���������������, the base class of
���"�������� and ��� �����"�������� (and ��
��������), rather ob-
scurely states:

‘Once registered with a selector, a channel remains registered until it is deregistered.
This involves deallocating whatever resources were allocated to the channel by the se-
lector.

A channel cannot be deregistered directly; instead, the key representing its registration
must be cancelled. Cancelling a key requests that the channel be deregistered during
the selector's next selection operation.’

This means that closing a ��������������� which is currently registered is in-
ternally implemented in two phases:

�. An operation to prevents further operations on the channel, executed in the
���������������!����� method, which also cancels any keys associated
with the channel, and

�. a deferred operation which really closes the socket: this takes place in the
next execution of a ��������!������LLL method on the appropriate ��������.

This is ‘as intended’,2 but it can cause problems in ��� clients using non-block-
ing channel I/O. Generally, a client will exit its select loop after closing a channel,
so phase 2 never occurs. The symptom of this behaviour is that the local socket
stays in the ��+�	<K$#; state.3 The simplest solution is to call
��������!������&�' immediately after closing the channel:

Selector sel;
SocketChannel sch;
// …
sch.close();
sel.selectNow();

Generally, there isn’t a great deal of point in using non-blocking I/O in clients: it
saves threads, but clients rarely deal with enough different servers (or connec-
tions) for it to be worth the trouble.

2. See Bug Parade id 5073504.
3. ��+�	<K$#; means that ��� is waiting for the local end to close the socket after a remote close
has been received. See Appendix A: t c p port states.

124 ���
���������	������������

 .� 7���	���5	��
	�
���

In addition to the +:9D	$� and +:9KD#;	 operations, multiplexing in ���
deals with ‘readiness’ of the +:9$��	:; and +:9�+&&	�; operations. The se-
lectable I/O operations supported by ��� are shown in Table 5.1.

In reality—in the underlying native ������56 ��	—there are not these four but
only �	� events:

(a) A ‘readable’ event, which signals both the existence of data in the receive-
buffer �
 the availability 0f an incoming connection to the ����� method.
In other words, under the covers, +:9$��	:; and +:9D	$� are the same
thing.

(b) A ‘writable’ event, which signals both the existence of space in the send-
buffer �
 completion of a client ���"�� connection. In other words, under
the covers +:9�+&&	�; and +:9KD#;	 are also the same thing, even

��,��
 .� Selectable I/O operations in ���

'
����	� ���	�

+:9$��	:;
(��� �����"��������)

��� �����"��������!����� would not return null: either
an incoming connection exists or an exception is pending.

+:9�+&&	�;
(���"���������with
connection pending)

���"��������.������������� would not return false: either
the connection is complete apart from the �������������
step or an exception is pending, typically a
�������	��������.

+:9D	$�
(connected
���"��������)

��� would not return zero: either data is present in the
socket receive-buffer, end-of-stream has been reached, or
an exception is pending. End-of-stream occurs if the remote
end has closed the connection or shut it down for output, or
if the local end has shut it down for input.a

a. In addition to end-of-stream, the *�
�� for � !���!�������!���������/�)!+:9D	$� up to "��
1.4.2 redundantly specifies ‘has been remotely shut down for further reading’: this refers to a re-
mote execution of ���"��!������'�+�����, which is already covered by the end-of-stream condi-
tion, as are the omitted cases of remote closure and local shutdown for input. See section 3.7.1 and
section 3.7.2.

+:9KD#;	
(connected
���"��������)

'���� would not return zero: either space exists in the socket
send-buffer, the connection has been closed or shutdown
for input at the remote end,b or an exception is pending.

b. The *�
�� for � !���!�������!���������/�)!+:9KD#;	 up to "�� 1.4.2 also specifies ‘has
been remotely shut down for further writing’: this refers to a remote execution of
���"��!������'�#����, but be warned that the propagation of this effect is platform-dependent:
see section 3.7.2.

�������t cp 125

more so than above, as both simply mean that space is available in the send-
buffer—a condition which of course first occurs when the connection is
complete.

The identity of +:9$��	:; and +:9D	$� in Java presents no problem, as
+:9$��	:; is only valid on ��� �����"���, for which +:9D	$� is invalid.

However, the identity of +:9�+&&	�; and +:9KD#;	 does cause problems.
+:9�+&&	�; and +:9KD#;	 are both valid on client ���"���, so an ambiguity
exists between these ‘events’: indeed some of the "�� 1.4 implementations mis-
behave if you try to use both of +:9�+&&	�; and +:9KD#;	 at the same time.
See for example Bug Parade bugs 4850373, 4960791, 4919127c. You must there-
fore proceed as follows:

(a) Only use +:9�+&&	�; on unconnected sockets: +:9�+&&	�; must be
removed from the ��������+�� as soon as it becomes ready for a channel.

(b) Only use +:9KD#;	 on connected sockets.

This confusion could have been avoided if Sun hadn’t tried to distinguish events
that are not distinct in their �	� specification.

Further, you should only use +:9KD#;	 when you have something to write
�
 you’ve already failed to write it completely (by getting a short or zero-length
result from a write method). Once the connection is complete, +:9KD#;	 is al-
most always ready, except for the moments during which space is unavailable in
the socket send-buffer. (This moment may be protracted if the remote end is
slower at reading data than the local end is at writing it.)

It is only ������ to select for +:9KD#;	 if you have data ready to be sent, and it
is only ��������
�
 if you have also just encountered a short write on the chan-
nel (�,�, the previous write operation didn’t write the full amount requested).

In other words, you should assume that a connected channel is ready for writ-
ing until you actually find that it isn’t. Whenever you have nothing to write, or
whenever a write operation succeeds completely, you should immediately stop
selecting for +:9KD#;	.

4,8,7 /%�!��

A simple multiplexing ��� echo server is shown in the following example. This
server never blocks in I/O, only in ��������!������. The server makes use of a key
attachment to maintain a separate >)��>����� per accepted connection. This is a
simple example of a more general attachment technique for connection contexts
which we will explore more fully in Chapter 12.

public class NIOEchoServer implements Runnable
{
public static final int TIMEOUT= 5*1000;// 5s
public static final int BUFFERSIZE= 8192;

126 ���
���������	������������

private ServerSocketChannel serverChannel;

// Constructor
public NIOEchoServer(int port) throws IOException
{
this.serverChannel = ServerSocketChannel.open();
serverChannel.configureBlocking(false);
serverChannel.socket().bind
(new InetSocketAddress(port));

}

// Runnable.run method
public void run()
{
try
{
Selector selector = Selector.open();
serverChannel.register(selector,
serverChannel.validOps());

// loop while there are any registered channels
while (selector.keys().size() > 0)
{
int keyCount = selector.select(TIMEOUT);
Iterator selectedKeysIterator =
selector.selectedKeys().iterator();

// loop over selected keys
while (selectedKeysIterator.hasNext())
{
SelectionKey key =
(SelectionKey)selectedKeysIterator.next();

// Remove from selected set and test validity
it.remove();
if (!key.isValid())
continue;

// dispatch:
if (key.isAcceptable())
handleAcceptable(key);

if (key.isReadable())
handleReadable(key);

if (key.isWritable())
handleWritable(key);

} // end iteration
} // end while selector.keys().size() > 0

�������t cp 127

}
catch (IOException e) { /*…*/ }

} // end run()

// handle acceptable key
void handleAcceptable(SelectionKey key)
{
try
{
ServerSocketChannel srvCh =
(ServerSocketChannel)key.channel();

SocketChannel channel = srvCh.accept();
channel.configureBlocking(false);
// allocate a buffer to the conversation
ByteBuffer buffer =
ByteBuffer.allocateDirect(BUFFERSIZE);

// register the accepted channel for read,
// with the buffer as the attachment
channel.register
(key.selector(), SelectionKey.OP_READ,buffer);

}
catch (IOException e)
{
/*…*/

}
} // end handleAcceptable()

// handle readable key
void handleReadable(SelectionKey key)
{
try
{
SocketChannel channel = (SocketChannel)key.channel();
ByteBuffer buffer = (ByteBuffer)key.attachment();
int count = channel.read(buffer);
// Echo input to output, assuming writability
// (see Table 5.1)
handleWritable();
if (count < 0)
{
// EOF - flush remaining output and close.
while (buffer.position() > 0)
{
buffer.flip();
channel.write(buffer);

128 ���
���������	������������

buffer.compact();
}
key.cancel();
channel.close();

}
}
catch (IOException e)
{
/*…*/

}
} // end handleReadable()

// handle writable key
void handleWritable(SelectionKey key)
{
try
{
SocketChannel channel = (SocketChannel)key.channel();
ByteBuffer buffer = (ByteBuffer)key.attachment();
buffer.flip();
int count = channel.write(buffer);
buffer.compact();
// Register or deregister for OP_WRITE depending on
// success of write operation (see Table 5.1).
int ops = key.interestOps();
if (buffer.hasRemaining())
ops |= SelectionKey.OP_WRITE;

else
ops &= ~SelectionKey.OP_WRITE;

key.interestOps(ops);
}
catch (IOException e)
{
/*…*/

}
} // end handleWritable()

} // end of NIOEchoServer

45�����
 .� Simple multiplexing ��� echo server

129

��������� ����	���

��
���
�	 ����� 	���
�-
������� so far, we have omitted the topic of
firewalls.1 We have implicitly assumed only the existence of a ��� /	� local area
network (���). This chapter describes the implications of deploying ��� and
��� servers over the Internet, or over large intranets containing firewalls. If you
intend to develop applications which are to be deployed across such networks,
you must read this chapter.2

From one point of view, the Internet is nothing but an extremely large ��� /	�
wide area network (��). However, making the jump from a ��� to the Inter-
net is not a trivial exercise. There are significant complications.

In order to prevent office-wide ���s becoming part of the global Internet, a
‘firewall’ is normally placed at the gateway between the ��� and the Internet
proper. Like a physical firewall, an Internet firewall’s purpose is to provide a high
level of security to those on the protected side by preventing dangerous elements
from entering, �,�, to block all except authorized communications between the
Internet and the inner ��� .

Figure 6.1 shows a simple view of a firewall.

�.� �0���
�-
-	�����

Firewalls are of two types, usually paired together:

1. Parts of this chapter first appeared in Pitt & McNiff, *�,���.�0'��&��
�� ���#���������'�

���������, Addison Wesley 2001, and are used by permission.
2. The discussion is by no means intended to provide complete coverage of firewalls or network
perimeter security techniques in general. This is a large topic. For further information, see
Cheswick and Bellovin, Firewalls and Internet Security.

130 ���
���������	������������

(a) Transport firewalls

(b) Application firewalls.

:,7,7 0���!��������	���

Transport firewalls are generally hardware boxes. They only understand a gen-
eral transport protocol, typically 	� (including ��� and User Datagram Protocol
(���)), and operate simply by allowing or disallowing connection requests
based on the source and target 	� address and port number.

Transport firewalls generally block all ��� and ��� ports except certain ‘well-
known’ ones, such as ���� (25), ���� (80), ���� (110), ���� (119), ����
(120), and 	��� (143).
The ports for -�� (20–21) are sometimes blocked, some-
times not. Other well-known ports such as Telnet (23) are usually blocked.3

‘Anonymous’ application-defined ports (1024 and up) are generally blocked, in-
cluding the ports for ���
 (1098) and the ��	 registry (1099), and all ports allo-
cated by the ��	 system for remote objects.

-�� is the Internet File Transfer Protocol. ���� is the Simple Mail Transfer Protocol
used between e-mail servers. Telnet is a protocol and application suite which provides
remote terminal access. ��� stands for the Post Office Protocol used by e-mail clients.
���� is the Network News Transfer Protocol. 	��� is the Internet Message Access
Protocol, an e-mail retrieval protocol used by e-mail clients. ���� is the HyperText
Transfer Protocol, the transport protocol associated with���� . It is the communica-
tions protocol observed between Web browsers and Web servers. It is not to be con-
fused with ���� itself, which is the page markup language of the World Wide Web,
and which is transported via ���� .

3. The ‘well-known’ ports for ��� are defined in �-� 1700, as amended.

LAN Internet

F
ir

ew
a l

l
9	����
�.�. Simple view of firewall

����	��� 131

:,7,2 !!������������	���

Application firewalls are also known as !��%���. An application firewall under-
stands a particular application protocol, such as -�� and ���� , and interposes
itself in the conversation between a client behind the transport firewall and a
server outside it. To the client, it appears to be the server; to the real server, it
appears to be the client. The application firewall ensures that what is going over
the connection really is a conversation in the application protocol concerned, and
it is controlled by an application-specific configuration which permits or denies
access to the outside based on application-specific considerations.

Figure 6.2 illustrates the relationship between transport firewalls and applica-
tion firewalls.

Transport firewalls generally restrict outgoing connections to those originated
by an application firewall. An installation’s total effective firewall consists of the
transport firewall and all application firewalls.

:,7,8 ���� �!��%���

The best-known type of application firewall is the ���� proxy.
Applications such as Web browsers can be configured to send ���� requests

via an ���� proxy server. The functions of the ���� proxy server are 5�6 to en-
sure that the data is indeed ���� requests and responses, 5��6 to control which
target sites and ports are allowed, and 5���6 to forward the request to the target
port. By this means, ‘harmless’ applications such as Web browsers can be config-
ured to penetrate the firewall—as long as what is going through it really is ���� .

The restriction to ���� works because the ���� proxy server really is a Web
server, and only understands the ���� protocol.

���� proxies usually also provide a cache service for Web pages: this service is outside
the scope of this discussion.

For the purpose of this discussion, ���� proxy services either:

(a) allow ���� to be sent to any port on the target host, or

LAN Internet

9	����
�.�. Application and transport firewalls

T
ra

n
sp

or
t

F
ir

ew
al

l

A
pp

lic
at

io
n

F
ir

ew
al

ls

132 ���
���������	������������

(b) allow ���� to be sent only to the well-known ���� port 80 on the target
host.

Java clients can be configured to send ���� requests via an ���� proxy server,
by setting the system properties ����!����)B��� and ����!����):���. These proper-
ties control the operation in Java of � !���!ED� and � !���!ED�Connection ob-
jects having @����A as the protocol; they also control the operation of ��	 clients,
as we shall see.

:,7,9 ����	�����������������
��������

Firewall configurations are under the control of network administrators. In the-
ory, network administrators can be persuaded to ‘open’ certain ports in order to
support specific application protocols such as ���,� 	 	�� or Java ��	 . In
practice, they are generally rather hard to convince about this: firewall policy crit-
ically affects corporate security.

�.� �����

����� is the title of another ‘peephole’ through the firewall. Logically speaking,
a ����� server is a general-purpose application proxy, often called a ‘�����
proxy’. It provides a means of encapsulating an authenticated conversation be-
tween a known client inside the firewall and a ����� server at the firewall. It
permits the client to connect to a service outside the firewall on an arbitrary port,
while allowing the network administrator to control which clients may access
this service, and without exposing arbitrary client-side ports through the fire-
wall.4

The conversation between the client and the ����� server is authenticated. However,
don’t assume that this secures the conversation in any way. The conversation between
the ����� server and the other end is not authenticated, and that is the part that takes
place over the Internet.

Java clients which use � !���!���"�� to connect to servers will automatically
conduct a ����� -based conversation if the system property ���"�:���)B��� is set,
This means that Java clients can use ����� to get through their own firewalls
and communicate with servers in the public internet.

4. ����� v5 is specified in �-� 1928.

����	��� 133

:,2,7 A������������������

����� is an excellent solution for the client side. ����� can also be used within
limits on the server side or for client-side callbacks, although server-side �����
is not supported in Java prior to "�� 1.4.0.

�.� ����
 ������� 	��

Most high-level protocols which attempt to solve the firewall issue use the ‘����
tunnelling’ technique, in which the communications are packaged inside ����
requests and responses, and sent via the well-known ���� port 80, which is
normally left open in firewalls.

This is rather like enclosing a sealed addressed envelope inside another sealed
addressed envelope, with the understanding that the inner envelope is to be
posted to the inner addressee when received by the outer addressee (the recipient
of the outer envelope). Consider the example of an over-supervised girl (Alice)
trying to write to her boyfriend (Bob) when her outgoing mail is scrutinized by
her parents. Alice seals a letter to her boyfriend inside a letter to an approved
girlfriend (Tracey). The letter to Tracey gets through the parental “firewall”, and
Tracey posts the inner envelope to Bob on receipt.

����
tunnelling only works through firewalls with ���� proxies.

:,8,7 A����������������� �����������

���� tunnelling is a client-side solution only:

(a) It cannot address the problem of a server behind its own firewall.

(b) It cannot handle client-side callbacks: servers outside a firewall cannot exe-
cute callbacks to clients located behind a firewall via ����� .

(c) It cannot address the problem of a server behind a firewall.

(d) An ���� server must be present at the server end, and an ���� proxy
server is required at the client-side firewall.

�.� 1���
 �����	���

The solutions available via Java code are as follows:

(a) Set ����!����)B��� and ����!����):��� to get ���� tunnelling in ��	 or
B���ED�����������!

(b) Set ���"�:���)B��� and ���"�:���):��� to use a ����� proxy for a ���"��.

134 ���
���������	������������

(c) Use the "�� 1.5 � !���!:���) class when constructing a ���"��. This over-
rides either of the above, and can provide either a direct connection, an
���� tunnel, or a connection mediated by ����� . This technique makes
for simpler programming when the actual firewall technique required is not
known in advance.

�. ������
+������
�������� 	��

Network Address Translation; usually referred to as ��� , is a function present
in many firewalls and routers, often in conjunction with ���� (Dynamic Host
Configuration Protocol). ��� is a technique for sharing a single 	� address
among multiple internal hosts. The ��� device presents a single 	� address to
the world outside it, and provides multiple 	� addresses to the subnet it controls.
��� performs all the necessary address translation on 	� , ��� , and ��� head-
ers to allow hosts inside its subnet to communicate with hosts outside it. The
outside hosts think they are communicating with the public ip address of the
��� device.

��� works well, and pretty transparently, for ��� clients and ��� senders, as
long as they don’t attempt to provide their own 	� addresses to hosts inside data
payloads, as ��� doesn’t attempt to rewrite payloads, not knowing anything
about application protocols. Application protocols which do provide ip address
information in payloads are therefore problematic within ��� -controlled sub-
nets. Java ��	 is one such example.

��� can get in the way of ��� servers and ��� receivers operating within its
subnet, as by default it won’t have ��� listeners or ��� receivers operating at
the ports involved. ��� devices can usually provide the required port-forwarding
to make this work, but special configuration is required, and this is generally
static: this means that use of dynamically-allocated port numbers for ��� listen-
ers or ��� receivers is problematic within ��� -controlled subnets.

135

�������
! ��������������

��	�
�������
�	 ������� secure sockets, which provide privacy and integ-
rity for network communications.

Secure sockets appear in Java in the � �!��� and � �!���!��� packages, which
were formerly known as the Java Secure Sockets Extension (" � ��).

We will examine the origins and current specifications of secure sockets; we
will discuss the level of security they provide; and we will discuss their imple-
mentation and use in Java.

!.� +
,�	�-
	��������	��
��
�����	�0

In brief, the security of a network communication depends on four things:

(a) Authenticating the identity of each party to the conversation.

(b) Authorizing that identity to participate in the conversation.

(c) Ensuring the privacy of the conversation.

(d) Ensuring the integrity of each delivered message.

 ��'��������� of the identity of an endpoint to the satisfaction of the other end-
point must ultimately be proven by an exchange of information previously
known to both ends, or acquired from a trusted third party, typically X.509 certif-
icate chains.
 ��'���B���� requires the application to decide whether the authenticated

identity is the one it wants to talk to in this conversation. I emphasise again that
authorization is inevitably a decision that can only be taken by the application: I
have never seen a way in which authorization can be satisfactorily delegated to an
API or framework.

136 ���
���������	������������

�����) assures that the data cannot be read in transit by eavesdroppers, �,�,
protects the conversation from passive attacks. It is accomplished via encryption
and decryption, again using a key known only to the parties to the conversation.
��������) assures that the message is delivered intact and has not been injected

or tampered with in transit, �,�, protects the conversation from active attacks. It is
usually achieved by sending and checking a �������
�����, a cryptographically
secure annotation, delivered with the message, formed by a computation over
the original message contents. The computation is repeated on receipt, to check
that the received and computed digests are equal. The digest itself is cryptologi-
cally secure, because it is computed with a key known only to the parties to the
conversation.

Note the order in which I have placed these factors. Security is too often
thought of only as cryptography, but it’s really not much use having a beautifully
encrypted and decrypted conversation unless you’re sure you know who you’re
talking to, and unless you can detect interpolations, forgeries, and replays.

Typically the keys used for signing message digests and encrypting messages
are short-lived keys agreed specifically for that conversation, to guard against key
leakage and replay attacks: these are known as ‘session keys’.

Encryption techniques are of two kinds: �)������� and �)�������. In symmet-
ric encryption, the same key is used to both encrypt and decrypt the message. In
asymmetric encryption, a ��)�!�� is used, of which one is publicly known, and
one is private to the receiving entity: the public key is used to encrypt the mes-
sage, but only the private key will decrypt it; conversely, when computing mes-
sage digests, the digest is formed with the private key and checked with the pub-
lic key, which assures that only the holder of the private key could have computed
the digest.

Encryption keys are chosen so that guessing them, or trying to crack the mes-
sage by brute-force enumeration of possible keys, is computationally infeasible,
�,�, would take longer than the lifetime of interest of the message or key. The
degree of privacy is related directly to the length of the key: this is why there are
40-bit keys, 56-bit keys, and so on up to (presently) 1024-bit keys. The longer the
key, the stronger the encryption.1

!.� ���������	��
��
� � �

Secure Sockets Layer (� � �) is the name of a family of protocols layered over ���
and the Sockets ��	 which provides authentication, integrity, and privacy serv-
ices.

1. An account of encryption and key-distribution techniques intelligible to the layman is given in
Singh, 0'�� ��
�� "���, chapter 6. A complete professional guide and reference to modern
cryptography is given in Schneier, !!���
���)������!'), 2000.

�������������� 137

�-� 2246 defines an Internet standard called the Transport Security Protocol (���).2

As this was developed from earlier specifications by Netscape of a protocol called Se-
cure Sockets Layer or � � � ,3 the entire topic is often generically referred to as ‘secure
sockets’ or � �� .

The ��� protocol and its � � � predecessors share a primary goal: ‘to provide pri-
vacy and data integrity between two communicating applications’. The protocol
‘allows client/server applications to communicate in a way that is designed to
prevent eavesdropping, tampering, or message forgery’. The ��� and � �� proto-
cols are widely implemented, �,�, by popular Web browsers and servers, and by
the � �!���!��� package. All implementations of of ��� and � � �
complying with
the specifications can interoperate with other complying implementations of the
same protocol. The ��� 1.0, � �� 3.0, and � � � 2.0 protocols do not interoperate,
but the setup phases of ��� and � �� 3.0 allow for clients and servers to negotiate
the actual protocol to be used, so that for example an endpoint can announce its
readiness to communicate via either TLS or SSLv3.4

Although there are differences in detail between ��� and � � � , the protocols all
consist of a ‘record protocol’, a ‘handshake protocol’, and an optional ‘session
resumption’ feature. These are described briefly below. For further details see
�-� 2246 or the � �� documents.

;,2,7 #����
�!�������

The lowest level is provided by the Record Protocol. This provides cryptographic
connection security which is !����� and �������.

Privacy is provided by data encryption via one of a number of symmetric cryp-
tographic techniques such as ��� ;
��� , ��4, ���. Encryption keys are generated
uniquely for each connection, based on a secret negotiated by another protocol
(such as the Handshake Protocol). The Record Protocol can also be used without
encryption.

Reliability is provided via a message integrity check using a keyed Message
Authentication Code <���> . Various secure hash functions (�,�, ��� , ��5,
etc.) can be used for ��� computations.

The Record Protocol is used for encapsulation of higher level protocols, in-
cluding 5�6 the Handshake Protocol described below and 5��6 whatever applica-
tion protocol is being transported.

The operating environment of the record protocol consists of a compression
algorithm, an encryption algorithm, and a ��� algorithm.

2. Dierks & Allen, �-� 2246: 0'��0A�����������=�������7,3, January 1999.
3. Hickman & Kipp, 0'�� ��A���������, Netscape Communications Corp., Feb 9, 1995; Frier,
Karlton, & Kocher, 0'����A�8,3���������, Netscape Communications Corp., Nov 18, 1996. See also
Schneier & Wagner, ��)��������'��� � � �8,3���������.
4. This is described in Appendix E of �-� 2246.

138 ���
���������	������������

;,2,2 G�
�'���!�������

The Handshake Protocol allows the server and client to authenticate each other
and to negotiate an encryption algorithm and secret cryptographic keys before
the application protocol transmits or receives its first byte of data. The Hand-
shake Protocol is itself secure, having the properties of authentication, privacy,
and integrity:

(a) The peer's identity can be authenticated using asymmetric (public key) cryp-
tography (e.g. ��� , ��� , etc.). This authentication can be made optional,
but it is generally required for at least one of the peers. See also the security
analysis in section 7.2.6 below.

(b) The negotiation of a shared secret is private: the negotiated secret is unavail-
able to eavesdroppers (passive attackers); and, provided at least one end-
point of the connection is authenticated, the secret cannot be obtained even
by an attacker who can place himself in the middle of the connection (an
active attacker).

(c) The negotiation messages have integrity: no attacker can modify the negoti-
ation communications without being detected by the parties to the commu-
nication.

The handshake protocol results in a �������, which establishes security parame-
ters for use by the Record Layer when protecting application data. The handshake
protocol can be initiated at any time.

� � � uses asymmetric encryption to establish identity and trust, and then estab-
lishes a symmetric ‘session key’ via an ��� or Diffie-Helman key exchange: the
parties to the conversation exchange a series of numbers leading to a number
known to both ends but which is neither observable nor computable by an eaves-
dropper. This number, or session key, is then used for symmetric encryption of
the conversation.

;,2,8 ��������

An � � � ������� is a collection of security parameters agreed between two peers—
two parties to a conversation—as a result of a handshake. It includes the peer
identities (if established), the encryption and compression methods to be used
between the peers, and the private and public keys and master secrets used by
these methods.

An � � � session can outlive the connection which produced it, and can be ‘re-
sumed’ by a subsequent or simultaneous connection between the same two
peers. This ‘session resumption’ feature of � � � allows the security parameters
associated with a single secure session to be used for multiple conversations
(��� connections) ‘sequentially or concurrently’, �,�, for connections formed one
after the other or at the same time. This technique saves on network transmis-

�������������� 139

sion times for the ��� connection handshake: most of the handshake protocol is
avoided when resuming an existing session; only the part which changes the cur-
rent cipher keys is executed, saving a significant amount of computation and net-
work transmission.

;,2,9 ����������)�

The term ‘session key’ is generally used in cryptography to refer to a temporary
key used to exchange between two endpoints. Using this term in � �� would be
confusing, as it would suggest incorrectly that session keys are part of the session
and are shared by all connections using that session. In fact, a unique key is used
for each direction of each distinct � � � connection—i.e. a unique key for each
distinct ������"�� in the distributed system. These two keys are therefore better
termed the ‘cipher keys’ for the connection. In this chapter we will use the term
‘cipher keys’ to denote the encryption keys used on a connection.

As we will see, the cipher keys for the connection can be changed as often as
desired by either end.

;,2,4 ��!'���������

��� and � � � support a variety of key exchange, bulk encryption, and message
authentication techniques. These are grouped into ‘cipher suites’. Each cipher
suite specifies an algorithm for each of key exchange, bulk encryption (including
secret key length), and message authentication. Cipher suites are identified by
names of the general form:

;��9�����������9K#;B9����� 9���

or

���9�����������9K#;B9����� 9���

where ��� or � �� specifices the protocol, ��)�%�'��� specifies the key-exchange
algorithm, ��!'�� specifies the encryption algorithm, and '�' specifies the mes-
sage authentication algorithm.

The set of techniques is open-ended, as is the set of cipher suites. ��� and � � �
clients and servers negotiate a common cipher suite for the connection being
created. The most secure of the combinations available to both client and server
is chosen. If no common cipher suite can be found, no session is established.

;,2,: �������)���)���

��� and � �� 3.0 provide security against passive attacks (eavesdropping) and re-
play attacks. To be secure against active attacks (man-in-the-middle), they ����

140 ���
���������	������������

have strong server authentication. The following security analysis is quoted from
�-� 2246.

?�����.����!�����)����)�����K���$��'�������
L����������������)�!����
��!��$
��������������!����������
��!!���,������������
�!��
������!��$!������'����
������
���������)��'���'�������'�
���������	����������!���
��)���������(�������
��'���������������>����
�����������������	'������������$��$�'�$��

��������
�����������,

������ � ��������������!����
��������������������(����'��'����������
���������)�����(
��)�(��
�!!�����������������������,����

�����(��'����!�����������������������
����������)�������,

0'���)�����������)�������������'��	��������)��%�'�����
���'�������������$
���'����!!����
(��
����)������	���')���)!����!'��������������'���
�������
,��'���
!��������)�(�93$�������������)!�������)�(��
����)��������������'���
�������
�	��'
�����������,���!�������������
����������������������	'���
���
����	'��'����$
����������
��������������'��������������!����+��
��'�������������������'����)
���
��������
����
���,

Similar wording appears in the � � � 3.0 document. Complete security analyses
appear in Appendix F of �-� 2246 (���) and appendix F of the � �� 3.0 specifica-
tion. � �� 2.0 is obsolete, and is being ‘phased out with all due haste’. It is vulner-
able to a number of active attacks, some of which are described in the � �� 3.0
specification. � �� and the security environment it needs to be embedded in are
discussed in Schneier, ���������
�A���, 2000. See also §§4.2 and following in the
frequently-asked questions list (-�=) of the � �� Talk List, available online at
����6,,'''!�H�!��
,�H�,��������<�������),���<��"<�H,.

;,2,; ���$��!�
�����

A ‘non-repudiable’ message is one which the sender cannot deny sending, hav-
ing a similar legal status to a paper document signed by the author. In computer
cryptology, this is accomplished by a
��������������(a secure computation per-
formed with the sender’s private key which accompanies the message and which
can be verified later with his public key (compare with encryption, which is per-
formed with the public key and reversed with the private key).

When receiving messages from an authenticated peer, � � � and ��� perform
all the necessary steps to establish non-repudation of messages �%��!� the last:
they don’t preserve any evidence which can be introduced into a court of law.
They don’t preserve the original message, the decryption, the signature, or the
peer’s certificate. For this reason, � � � and ��� by themselves are not inherently
non-repudiable protocols.

�������������� 141

!.� :�����
�������
	�
1���

Implementations of � � � for Java have been available for some years from third-
party vendors. In 1999 Sun introduced the Java Secure Sockets Extension
(" � ��), which supports ��� 1.0, � � � 3.0, ��� , and related protocols. This be-
came a standard part of Java from "�� 1.4.

" � �� consists of the packages � �!��� and � �!���!���. It is designed to sup-
port a variety of security protocols including but not limited to ��� and � � � 3.0.
Like many other parts of Java, these packages define an ��	 for use by program-
mers and a Service Provider Interface or �� 	 for use by implementors: Sun pro-
vide a ‘reference’ implementation. This means that the implementations availa-
ble from other vendors can be operated via the standard ��	 as long as the
vendor provides a suitable implementation of the �� 	 . Sun’s implementation of-
fers useable performance and facilities, but the specialist vendors may add value
by offering extra features and superior performance.

Sun’s Java implementation complies with the relevant standards, as should
those by third-party vendors, so they should interoperate with each other and
with compliant non-Java implementations.

;,8,7 ��!�������������

Throughout the rest of this chapter the following Java import statements are
assumed:5

import java.io.*;
import java.net.*;
import java.security.*;
import java.security.cert.*;
import javax.net.*;
import javax.net.ssl.*;

;,8,2 ����������

One of the peculiarities of " � �� is that it doesn’t run ‘out of the box’. " � �� is quite
tricky to install and configure correctly. You must perform some manual steps:

(a) If you use server or client authentication—server authentication is required
in all the protocols enabled by default—you ���� install a ‘keystore’ and tell
your application’s " �� about it, as explained in section 7.3.3.

(b) You may need to install a ‘truststore’ as explained in section 7.3.3.

5. This chapter describes � �� and �� � as from "�� 1.4 onwards, not the earlier separate " � � � .

142 ���
���������	������������

Follow the instructions provided with the "�� or your third-party implementa-
tion carefully. Some symptoms of an incorrect installation, generally encoun-
tered when trying to create a secure socket or server socket, are shown in
Table 7.1.6

;,8,8 M�)��������
������������

The " � �� ‘keystore’ is a standard Java keystore created with the ��)����� tool, from
which servers or clients obtain private-key certificates when authenticating
themselves to peers. The simplest way to tell your application about the " � ��
keystore is to set appropriate values for the system properties
� �!���!���!"�)����� and � �!���!���!"�)�����:��'���; other techniques are
described in section 7.12.

If you are creating ������ �����"��� and you don’t enable non-authenticating
cipher suites, you ���� define a keystore: there is no default.

The " � �� ‘truststore’ is also a Java keystore, but it is used by peers which re-
ceive authentication certificates, to establish whether they can be trusted. Java is
shipped with a truststore in the file named ������ in the directory
T5.$($9B+�	U,���,�������). " � �� automatically looks for this truststore and
also for one named ���������� in the same directory. To use a different trust-
store, you can set the system property � �!���!���!���������� appropriately. (The
order of this processing is as follows: if � �!���!���!���������� is set it is used,
otherwise if ���������� exists it is used, otherwise ������.)

��,��
!.� " � �� installation problems

 ��
��� #�����

The first secure socket
takes a long time to create

This is normal. It can be masked as described in
section 7.12.

���"��	�������� : no � ��
Server Sockets, or
� �� implementation not
available

5�6 The �������)!�����) file does not include the " � ��
provider.
5��6 The truststore or keystore password is incorrect.
5���6 The truststore or keystore is in an unknown format
or is corrupt.

���	�������� : No available
certificate corresponds to
the � � � cipher suites
which are enabled

5�6 No keystore was defined for a server or client which
needed to authenticate itself. Server authentication is
enabled by default. See section 7.3.3.

5��6 No certificate in the keystore matches any enabled
cipher suite. For example, if only RSA cipher suites are
enabled, an RSA keyEntry must be available in the
keystore.

6. See also section 7.15 and Table 7.5. For this reason methods introduced in "��
 1.4 are not so
marked as they are in the rest of this book.

�������������� 143

The � �!���!���!����������:��'��� property specifies the truststore password, but
normally this does not need to be set. The reason for this is described in section 7.12,
along with other ways of establishing the keystore and truststore.

!.� :�����
-�����0
�������

The socket factory framework used by " � �� is defined by the � �!��� factory
classes:

class SocketFactory
{

static SocketFactory getDefault();
Socket createSocket()
throws IOException;

Socket createSocket(String host, int port)
throws IOException, UnknownHostException;

Socket createSocket(String host, int port,
InetAddress localAddress, int localPort)

throws IOException, UnknownHostException;
Socket createSocket(InetAddress host, int port)
throws IOException;

Socket createSocket(InetAddress host, int port,
InetAddress localAddress,
int localPort)

throws IOException, UnknownHostException;
}

class ServerSocketFactory
{

static ServerSocketFactory getDefault();
ServerSocket createServerSocket()
throws IOException;

ServerSocket createServerSocket(int port)
throws IOException;

ServerSocket createServerSocket(int port, int backlog)
throws IOException;

ServerSocket createServerSocket(int port, int backlog,
InetAddress localAddress)

throws IOException;
}

The static
�������� methods of these factory classes return factory instances
which create standard Java ���"��� and ��� �����"���. The various socket-
creation methods should look familiar, as they correspond precisely to the con-

144 ���
���������	������������

structors for ��� �����"��� and ���"��� which we have already encountered in
section 3.3.1 and section 3.4.1 respectively, and need no further explanation here.

With these factories, you can code an entire application using standard
sockets:

class Client
{
SocketFactory factory = SocketFactory.getDefault();
Socket socket;

Client(String host, int port) throws IOException
{
this.socket = factory.createSocket(host, port);

}

// …
}

class Server
{
ServerSocketFactory factory =
ServerSocketFactory.getDefault();

ServerSocket serverSocket;

Server(int port) throws IOException
{
this.serverSocket = factory.createServerSocket(port);

}
// …

}

and so on as we have seen many times before.
The � �!���!��� factory classes extend the socket factory classes above. The

static
�������� methods of these factory classes return factory instances which
create secure sockets and server sockets:

class SSLSocketFactory extends javax.net.SocketFactory
{
static SocketFactory getDefault();

}

class SSLServerSocketFactory
extends javax.net.ServerSocketFactory

{
static ServerSocketFactory getDefault();

}

�������������� 145

To agree with the � �!��� socket factory interfaces, the return types of these methods
are declared as � �!���!���"��C����) and � �!���!��� �����"��C����) respectively,
although what they actually return are objects of the derived classes
� �!���!���!������"��C����) and � �!���!���!������ �����"��C����) respectively.
This is unimportant if you only want to call methods already defined above; but if you
want to call � � � -specific methods on the socket factories, you must typecast the return
values to ������"��C����) and ������ �����"��C����) respectively.

Once you have instances of these factories, you can create secure sockets with
their factory methods: these are identical to those exported by ���"��C����) and
��� �����"��C����), �,�, correspond to constructors for ���"�� and ��� �����"��.

By using the socket-factory technique, we can switch back and forth between
standard sockets and secure sockets as often as we like, �,�, for development or
debugging purposes—as long as we are sure to switch ���' ends: standard sock-
ets do not interoperate with secure sockets (of course!—otherwise the secure
sockets would not be secure).

At this point, provided you have installed " � �� correctly, we have enough in-
formation to convert the application classes above to � �� :

class Client
{
// This is the only change for a client.
SocketFactory factory = SSLSocketFactory.getDefault();
Socket socket;

Client(String host, int port) throws IOException
{
this.socket = factory.createSocket(host, port);

}
// …

}

class Server
{
// This is the only change required for a server.
ServerSocketFactoryfactory =
SSLServerSocketFactory.getDefault();

ServerSocketserverSocket;

static // initializer
{
System.setProperty(“javax.net.ssl.keyStore”, …);
System.setProperty(“javax.net.ssl.keyStorePassword”, …);

}

146 ���
���������	������������

Server(int port) throws IOException
{
this.serverSocket = factory.createServerSocket(port);

}
// …

}

and so on (fill in the ellipses … appropriately yourself). Note that the initialization
of the �����) variable is different in each case, plus the setting of the keystore
properties for the server.

;,9,7 ������������)�����

The ������"��C����) class exports the following connection-layering method in
addition to those specified by � �!���!���"��C����) :

class SSLSocketFactory extends javax.net.SocketFactory
{
Socket createSocket(Socket socket, String host,

int port, boolean autoClose)
throws IOException;

}

This method is specific to ������"��C����). It is used when the underlying
���"�� already exists and it is desired to transform it into a secure socket.

The �������� parameter of this method controls whether closing the secure
socket returned by the method also closes the underlying ���"�� supplied to the
method. You could set this to false if you want to (dangerously) interleave secure
communications over the ������"�� with insecure (but faster) communications
directly over the ���"��, or if you want to (again dangerously) terminate the se-
cure part of the conversation and continue it insecurely.

In theory this method could also be used to wrap an ������"�� inside another
������"��, thus obtaining multiple levels of encryption. I don’t recommend it: the per-
formance would be atrocious!

!. :�����
������
������	���

As we already know what to do with a ���"�� and a ��� �����"��, that’s it! Stream
input and output with " � �� sockets is exactly the same as the socket stream I/O
techniques we have already encountered in section 3.6. (Channel I/O with " � ��
sockets is discussed in section 7.9.) The only substantive differences you will no-
tice are:

�������������� 147

(a) The creation of the first ������"�� or ������ �����"�� takes an appreciable
amount of time, due to seeding of a secure random number generator.

(b) Using a >�������+���������� coupled to the socket’s output stream is ��$
������, otherwise the overhead of the record protocol is immense.7

(c) Sending urgent data, and getting or setting the ++>#����� state are not sup-
ported (an unchecked E����������+�������	�������� is thrown).

(d) ������"��!
��#���������-3! �����-3 always returns zero.

(e) For security reasons (to prevent truncation attacks), there is a close_notify
message at the level of the record protocol, which must be responded to im-
mediately with an outgoing close_notify (in other words, both sides of the
connection must be closed at the same time); for this reason, the
������'�#���� and ������'�+����� methods are not supported (an un-
checked E����������+�������	�������� is thrown).

The factory methods above actually create objects of type ������"�� and
������ �����"�� : these extend � !���!���"�� and � !���!��� �����"�� respec-
tively, and therefore export the same methods. They also export additional meth-
ods to control many aspects of " � �� @ � behaviour.

Well, that’s ����� it. The rest of this chapter describes " � �� -specific program-
ming techniques, including the handshake, the resulting session, client and
server authentication, controlling the cipher suite and the protocol used (TLS,
SSLv3, SSLv2Hello), the ‘session context’, session sharing, connection layering,
the intersection of � � � and channel I/O, the intersection of � � � and ��	 , ses-
sion management, exceptions in � �� ; � � � system properties, and a sample � � �
client and server.

;,4,7 0'��'�
�'��

As we saw in section 7.2.2, the � � � handshake negotiates security parameters
with the peer. The handshake is initiated automatically when the first input or
output operation is performed on the socket: it is deferred until then to give ap-
plications an opportunity to configure cipher suites, server/client mode, authen-
tication requirements, and so on as described in the following sections. The
handshake can be initiated manually with the method:

7. For example, writing 16 bytes one at a time (e.g. via ��+����������!'����>)���) results in
416 bytes of output; writing them at once (�,�, via ��+����������!'����>)��� coupled to an
intermedate >�������+���������� followed by a �����) results in 41 bytes of output.

148 ���
���������	������������

class SSLSocket
{

void startHandshake() throws IOException;
}

Regardless of whether the handshake is initiated manually or automatically,
there are several possibilities:

(a) No handshake has ever been performed between the peers. In this case the
����B����"� method is synchronous, and returns when the initial hand-
shake is complete or throws an #+	��������. This handshake establishes the
session with its cipher suite and peer identities, as well as the cipher keys.

(b) A handshake has been performed between the same peers; neither the cli-
ent or the server has invalidated the session that resulted; and session re-
sumption is supported by the " � �� implementation. In this case, the
����B����"� method is asynchronous and returns immediately. If data
has already been sent on the connection, it continues to flow during the
handshake. This handshake only establishes new cipher keys for the con-
nection.

(c) The session has been invalidated and another valid session is available for
resumption. If data has already been sent on the connection, it continues to
flow during the handshake. This handshake only resumes an existing ses-
sion with new cipher keys for the connection. In this case the
����B����"� method is asynchronous and returns immediately. This
case is not significanty different from case (b).

(d) The session has been invalidated, no other valid sessions are available (or
session resumption is not supported), and session creation has ��� been dis-
abled. In this case the handshake establishes a new session as in case (a); the
handshake is asynchronous as in case (b).

(e) The session has been invalidated, no other valid sessions are available (or
session resumption is not supported), and session creation has been disa-
bled. In this case the handshake attempts to establish a new session as in
case (a); the handshake is asynchronous as in case (b); the attempt will fail
and the next read or write will throw an ���	��������.

Regardless of whether the handshake is synchronous or asynchronous, the com-
pletion of the handshake can be monitored immediately by using a handshake
listener as discussed below.

If handshaking fails for any reason, the socket is automatically closed and can-
not be used any further.

There is no need to start the initial handshake explicitly, as the first I/O on the
connection will initiate the handshake and throw an #+	�������� if it fails. How-
ever, it can be useful to perform the initial handshake explicitly so that any excep-

�������������� 149

tions arising out of it can be caught in one place rather than percolating all
through the � #$ code for the socket.

It is ���) useful for security purposes to perform

������ handshakes, for
example to establish new cipher keys after a certain period of time; to tune the
cipher suites and authentication modes if those initially negotiated are unsatis-
factory or need upgrading because the conversation is getting progressively more
secret; or to establish a new session, �,�, to completely re-authenticate the peer
and re-establish the cipher suites. If � � � connections are to be long-lived, it is
standard security practice to change the encryption keys pretty frequently, and to
expire sessions somewhat less frequently. �-� 2246 suggests an upper limit of
24 hours on session lifetimes.

It is clear from �-� 2246 §7.4 that either the client or the server may initiate a
re-handshake. However some protocols may not support multiple handshakes
on an existing socket, in which case an #+	�������� may be thrown.

The completion of the handshake can be monitored by implementing and reg-
istering a B����"�������������������:

class SSLSocket
{
// arguments may not be null …
void addHandshakeCompletedListener
(HandshakeCompletedListener listener);

void removeHandshakeCompletedListener
(HandshakeCompletedListener listener);

}

where the listener supplied implements the interface:

interface HandshakeCompletedListener extends EventListener
{
void handshakeCompleted(HandshakeCompletedEvent event);

}

When a handshake completes successfully, a B����"����������	 ��� object
is passed to the listener’s �����"���������� method. This object provides ac-
cess to the session parameters which have just been negotiated by the
handshake: the cipher suite, the local certificates if any passed to the peer, the
certificates if any passed by the peer, the ����������, and the ������"�� on
which handshaking has just completed. B����"����������	 ��� exports the
following methods:

class HandshakeCompletedEvent extends EventObject
{

String getCipherSuite();
Certificate[] getLocalCertificates();

150 ���
���������	������������

// @deprecated: use getPeerCertificates
X509Certificate[]

getPeerCertificateChain()
throws SSLPeerUnverifiedException;

Certificate[] getPeerCertificates()
throws SSLPeerUnverifiedException;

Principal getPeerPrincipal()
throws SSLPeerUnverifiedException;

SSLSession getSession();
SSLSocket getSocket();

}

Most of these methods are just shorthands for the corresponding methods of
����������, which are discussed in section 7.6. The inherited
�������� method
returns the same value as
�����"��, but as an +�����, not as an ������"��.

Good security practice
���
� that the identity of the peer be verified when
the handshake completes: this is the application-defined authorization step re-
ferred to above.

X509Certificate cert = (X509Certificate)event
.getPeerCertificates()[0];

X500Principal issuerDN = cert.getIssuerX500Principal();
// check issuerDN.getName() against that expected …
X500Principal subjectDN = cert.getSubjectX500Principal();
// check subjectDN.getName() against that expected …

� �� is responsible for checking the peer certificates for expiry, revocation, and
trust: this establishes whether the certificate is a valid certificate leading to a
trusted source of certificates, but it doesn’t establish whether it represents the
required identity. Only the application, or indeed the operator, knows that! As I
observed above, it’s not much use conducting an encrypted and authenticated
conversation unless you know who you’re talking to, and unless that is the per-
son you want to utter these secrets to.

However, a B����"�����������Listener object’s �����"����������
callback can’t throw any checked exception, and throwing an unchecked excep-
tion is pointless (handshake listeners being despatched in a separate thread in
Sun’s implementation). If you dislike the peer’s identity (or you don’t like the
negotiated cipher suite, or have some other problem with the handshake), all you
can sensibly do inside the callback is either:

(a) close the socket, and perhaps notify the rest of your application somehow,
or, less drastically

(b) disable session creation (see section 7.5.6); invalidate the session (see
section 7.6.2), and request a new handshake: while keeping the socket

�������������� 151

open, this will cause it to become completely unusable, as any subsequent
I/O operation will cause an ���	�������� or #+	��������.

For this reason it may be better to check the peer’s identity (or the cipher suite or
any other aspect of the handshake) from �����
� the �����"���������� call-
back, by getting and interrogating the ���������� as discussed in section 7.6.

If you do like the peer’s identity inside the handshake completion callback but
don’t like the negotiated cipher suite, you can change the enabled cipher suites
on the socket, invalidate the session, and start a new handshake.

;,4,2 ���������
�

By default, a client application creates sockets in ‘client’ mode and a server socket
creates sockets in ‘server’ mode. This refers to the handshake protocol’s concept
of server and client when authenticating. Normally, servers are required to au-
thenticate themselves; clients are not. In cases such as ‘callbacks’ where the cli-
ent is also a server, this may need to be reversed, so that all authentication is
provided by the same end of the connection: a client with a callback would use an
������ �����"�� in ‘client’ mode to accept the callback, while the server would
use an ������"�� with ‘client’ mode disabled (�,�, in ‘server’ mode) to initiate the
connection to the callback. The -�� protocol is an example of this situation,
which can also arise in applications built on Java ��	 .

The ‘client’ mode of a socket is controlled by the methods:

class SSLSocket/class SSLServerSocket
{
boolean getUseClientMode();
void setUseClientMode(boolean useClientMode);

}

where the default value for a socket created by ������"��C����)!��������"�� is
����, and the default value for a socket created by ������ �����"��!����� is in-
herited from the setting for the server socket, which in turn is ���� by default.

;,4,8 ���������'���������

Unless you have enabled a non-authenticating cipher suite,8 the server will au-
thenticate itself to the client during the handshake. In addition to this, you can
also request or require the client to authenticate itself to the server, by using these
methods:

8. �,�, one of the suites containing the string ‘9���9’, which are disabled by default.

152 ���
���������	������������

class SSLSocket/class SSLServerSocket
{

boolean getWantClientAuth();
boolean getNeedClientAuth();
void setWantClientAuth(boolean wantClientAuth);
void setNeedClientAuth(boolean needClientAuth);

}

These methods are only useful for sockets in the ‘server’ mode discussed
in section 7.5.2: �,�, by default, sockets resulting from ������ �����"��!�����.
(From the point of view of authentication, it is only in server mode that the client
is at the other end: if the socket is in client mode, the ������ is at the other end.)

If '��������$��� is set, the client is requested to authenticate itself, but the
handshake succeeds whether or not the client does so. In this case, client authen-
tication is only requested if appropriate to the cipher suite which has been nego-
tiated.

If ����������$����is set, the client is ��>����
 to authenticate itself: the hand-
shake only succeeds if the client does so, otherwise negotiation ceases and the
connection is dropped. Calling ���K��������$��� overrides any previous setting
of ���&���������$���, and ���������.

;,4,9 ��!'������������'�
�

The cipher suites supported by Java vary depending on your geographic location,
because of ��� government restrictions on the export of cryptographic software.
There are two sets of cipher suites: the ��!!����
 cipher suites, �,�, the complete
set available to the installation, and the �����
 cipher suites, �,�, those enabled by
default. Initially, Java only enables those cipher suites which provide confidenti-
ality and which require server authentication; these constitute the minimum
suggested configuration. The set of supported and enabled cipher suites can be
obtained from static socket factory methods, or from a socket or server socket
instance, and can be modified for a given socket or server socket instance, as
shown in Table 7.2.

��,��
!.� Cipher suite methods

#������ �����! �����	
�	�

������"��C����)�
������ �����"��C����)�
������ �����"���
������"��

����������������������� Return all cipher suites
supported by the
installation.

������"��C����)�
������ �����"��C����)

�������������������� Return the cipher suites
which are enabled by
default.

�������������� 153

All the enquiry methods return an array of �����
 representing cipher suite
names as described in section 7.2.5.

The enabled cipher suites for a socket or server socket can be altered via the
���	����������������� methods of ������"�� and ������ �����"��. These
methods both take as argument an array of �����
 representing the cipher suite
names to be enabled, each of which must have been listed as being supported by
the
����������������������� method. These methods completely replace the
previous enabled set. They only affect the � � � handshake operation, which oc-
curs as described in section 7.5.1. The set of enabled cipher suites for a server
socket is inherited by sockets resulting from ��� �����"��!�����.

As we saw in section 7.2.5, the strongest common cipher suite is used for a
secure connection. There are several reasons why an enabled cipher suite might
not be used:

(a) It may not be enabled at the remote peer.

(b) Private keys or certificates of the format required by the cipher suite may not
be available at both peers.

(c) The cipher suite may be anonymous but the remote peer requires authenti-
cation.

One way of ���!�����) getting round an incorrect installation is to enable all ci-
pher suites on both client and server sides:

socket.setEnabledCipherSuites
(socket.getSupportedCipherSuites());

This allows Java to use any supported cipher suite, including those which don’t
require server authentication: these are generally disabled because they are by
definition insecure, for the reasons discussed in section 7.2.6. It can be useful
for development purposes to use a less secure cipher suite, �,�, for temporary
performance reasons at development time, or for testing prior to the acquisition
of certificates. G�	����(the problem solved by this technique is generally a miss-
ing, mis-installed, or expired server certificate, which should be corrected in-
stead.

������ �����"���
������"��

��	����������������� Return all cipher suites
enabled on this socket.

������ �����"���
������"��

���	����������������� Change the set of cipher
suites enabled on this
socket.

��,��
!.� Cipher suite methods (continued)

#������ �����! �����	
�	�

154 ���
���������	������������

;,4,4 ������������'�
��

The " � �� protocols supported by Java vary depending on the installation and ven-
dor. There are two sets of protocols: the ��!!����
 protocols, �,�, the complete set
available to the installation, and the �����
 protocols, �,�, those enabled by de-
fault. A protocol is identified by a string: in "�� 1.5, these are in order of decreas-
ing strength, ‘TLSv1’ and ‘SSLv3’, as well as the pseudo-protocol ‘SSLV2Hello’.9

In each case, the protocol represents the ������� protocol level which can be
negotiated. The set of supported and enabled protocols can be queried and modi-
fied for a socket instance by the following methods:

class SSLSocket/class SSLServerSocket
{

// return all protocols supported by the installation
String[] getSupportedProtocols();
// return all protocols currently enabled on this socket
String[] getEnablededProtocols();
// set protocols enabled on this socket
void setEnabledProtocols(String[] protocols);

}

All the enquiry methods return an array of �����
 representing protocol names.
The enabled cipher suites for a socket or server socket can be altered via the
���	�����:�������� methods, which take an array of �����
 representing the
protocol names to be enabled, each of which must have been listed as being sup-
ported by the
�����������:�������� method. These methods completely replace
the previous enabled set. They only affect the � � � handshake, which occurs as
described in section 7.5.1.

The enabled protocols for a server socket are inherited by sockets resulting
from ��� �����"��!�����.

The strongest common protocol is always negotiated for a secure conection.
An enabled protocol can only be used if it is also enabled at the remote peer. As an
example, the following code snippet ensures that the SSLv3 protocol is not used:

SSLSocket socket;// initialization not shown …
String[] protocols = socket.getSupportedProtocols();
Arrays.sort(protocols);
int n = Arrays.binarySearch(protocols, “SSLv3”);
if (n >= 0) // found
{
List list = new ArrayList(Arrays.asList(protocols));
list.remove(n);

9. ‘SSLv2Hello’ is a pseudo-protocol which allows Java to initiate the handshake with an SSLv2
‘hello message’. This does ��� cause use of the SSLv2 protocol, which is not supported by Java at
all. The necessity for this procedure is discussed in �-� 2246.

�������������� 155

socket.setEnabledProtocols
((String[])list.toArray(new String[0]));

}

A similar technique can be used to disable the SSLv2Hello pseudo-protocol de-
scribed above, which is not recognized by some SSL implementations.

;,4,: -�����������������������

Normally an ������"�� can create a new session by invalidating its current ses-
sion and starting a new handshake. This can be controlled with the methods:

class SSLSocket/class SSLServerSocket
{
boolean getEnableSessionCreation();// default = true
void setEnableSessionCreation(boolean enable);

}

where the setting for a server socket is inherited by sockets resulting from
��� �����"��!�����. If session creation has been disabled, only existing non-
invalidated sessions may be resumed: if no such sessions exist, no new hand-
shakes can successfully occur. This facility has several uses:

(a) For an ������"��, you might disable this option before the first handshake
if valid sessions with the same peer are known to exist.

(b) During a handshake listener callback, if you don’t like the peer identity or
the negotiated cipher suite, you can render the ������"�� useless by disa-
bling session creation, invalidating the session, and requesting a new hand-
shake.

(c) A framework might want to prevent the application performing additional
handshakes completely, by performing a manual handshake on each new
������"�� and then disabling session creation.

(d) For an ������ �����"��, disabling this option has the effect of disabling all
accepted sockets except those accepted from peers who have already estab-
lished sessions: this might be useful in certain closed environments.

!.� :���	���

‘In SSL, �������s are used to describe an ongoing relationship between two enti-
ties.’10 An � � � session can outlive the connection which created it, and can be
used simultaneously or sequentially by multiple connections between the same

10. *�
�� for � �!���!���!����������.

156 ���
���������	������������

two entities. The session used on a connection may be replaced by a different
session. Sessions are created or resumed as part of the � � � handshaking proto-
col.

An � �� session consists of a cipher suite and the identities of the client and
server, if known. It is represented by the ���������� interface:

interface SSLSession
{
String getCipherSuite();
long getCreationTime();
byte[] getID();
long getLastAccessedTime();
Certificate[] getLocalCertificates();
// @deprecated: use getPeerCertificates
X509Certificate[] getPeerCertificateChain()
throws SSLPeerUnverifiedException;

Principal getPeerPrincipal()
throws SSLPeerUnverifiedException;

Certificate[] getPeerCertificates()
throws SSLPeerUnverifiedException;

String getPeerHost();
String getPeerPort();
String getProtocol();
SSLContext getSessionContext();
Object getValue(String name);
String[] getValueNames();
void invalidate();
void putValue(String name, Object value);
void removeValue

(String name, Object value);
}

The session currently associated with an � � � socket is obtained by the
������"��!
��������� method. This method establishes the session if necessary
by initiating the handshake and blocking till it completes. If an error occurred
during the handshake,
��������� returns an invalid ���������� object whose
cipher suite is ‘���9&E��9K#;B9&E��9&E��’, an invalid value.11

The cipher suite negotiated for a session has already been described. The iden-
tifier associated with the session is created by the handshake protocol as defined
by �-� 2246. The creation time and last-accessed time are automatically main-
tained by Java, and are held as milliseconds since midnight, January 1, 1970

11. This is a very strange piece of design. Throwing an ���	�������� would have been more
conventional and certainly more convenient for the application programmer.

�������������� 157

��� . In this context, ‘access’ only means establishing a new connection via this
session, and specifically excludes calling any of the ���������� methods listed
above. The last-access time is intended to be used in session management, �,�,
invalidating sessions which have been unused for some period of time, or sorting
sessions by age to optimize some task.

The !������� of a session is the standard protocol name negotiated by the hand-
shake, e.g. ‘TLSv1’, ‘SSLv3’, as described in section 7.5.5.

For the server, the !����'��� is the client's host; and for the client, it is the
server's host. The peer host may not be a fully qualified host name or even a host
name at all, as it may represent a string encoding of the peer's network address.
If a host name is desired, it might be resolved through a name service based on
the value returned by this method. This value is not authenticated and should not
be relied on for security purposes. It is mainly useful for non-legalistic logging
and tracing.

Sessions support {���(� ����} pairs via the
��(���,
��(���&���,
���(���, and ���� �(��� methods. This facility is provided for application pur-
poses like session management, and is not used internally: see also section 7.7.

The �������������%� of an � �� session is described in section 7.8.

;,:,7 A�����
�!���������������

The local certificate array returned by the
����������������� method is the cer-
tificate chain which was actually sent to the peer during handshaking: the chain
is selected from all available chains by the implementation’s idea of the ‘best’
chain available, �,�, to comply with a format dictated by the cipher suite. The

����������������� method returns ���� if no certificates were passed to the peer.

Similarly, the peer certificate array returned by the
��:�������������� method
is the certificate chain received from the peer during handshaking, selected by
the peer in a similar way. The certificate arrays returned by these methods start
with the local or peer entity’s own certificate, followed by any certificate-authority
certificates in order from leaf to root.

;,:,2 �����
�������������

A session can be �����
��
. This prevents further connections being formed on
this session, i.e. prevents resumption of this session by any new connection cre-
ated between the same two peers. However, invalidating a session has no effect
on existing connections in the session: specifically, it does ��� force a new hand-
shake to occur on an existing connection; nor does it prevent that connection
being used in future. A new handshake can be initiated as described
in section 7.5.1. An � �� connection can be completely disabled by:

(a) Disabling creation of new sessions as discussed in section 7.5.6, and

(b) invalidating its session, and

158 ���
���������	������������

(c) requesting a new handshake.

An ������"�� in this state cannot perform any I/O (except closure) without
throwing an ���	�������� or #+	��������. (Alternatively, you ����
 just close the
socket …)

;,:,8 ���������'����

If we create two or more ������"��� connected to the same target, two distinct
������"��� are returned by the ������"��C����)!��������"�� method. How-
ever, � �� is able to use a single � �� session among all these ������"���. In other
words, a single � �!���!���!���������� may be shared by multiple
� �!���!���!������"��� connected to the same target: an � �� socket can share a
previously established session with the same peer without having to do a com-
plete handshake.

This can be rather confusing. The relationship between ������"���,
�����������, and ������������������ is depicted in the object graph shown in
Figure 7.1 (this particular view results from a special case, as we will see later).

Multiple ������"��� can share the same ����������, and in fact this is the
default behaviour:12 if you create multiple ������"��� connected to the same tar-
get, a single handshake is done, resulting in a single ����������������. If you
subsequently invalidate the session and start another handshake on any of the
������"���, the handshake will cause the ������"�� to leave that session and
either:

12. if session resumption is supported, as it usually is, except on some small mobile devices.

9	����
!.�. � � � object graph

������"�� ������"��������"��

��������������������

�������������	�
	

�������������� 159

(a) resume an existing session, if another session between the same two peers
exists which has not been invalidated, or

(b) create a new ���������� via a complete renegotiation of cipher suites, au-
thentication, and secret key, if new session creation hasn’t been disabled for
the socket as described in section 7.6, or

(c) fail.

This in turn means that a single ������"�� may have multiple ����������� over
its lifetime.

In other words, the object graph of Figure 7.1 must have resulted from the cre-
ation of three ������"��� and the execution of a session invalidation and a new
handshake on the third socket.

;,:,9 ����������������

As a general principle, ������� should use session sharing as much as possible up
to the 24-hour limit mentioned earlier; ������� need to balance the benefits of ses-
sion-sharing against the cost of the memory concerned, probably by enforcing
both a maximum session lifetime (measured in minutes rather than hours), and
a lowish maximum size for the session-cache. See also section 7.13.

!.! 8	��	��
C
,	��	��
�	�������

Objects can be ����
 to or ������
 from an ����������, and obtained from it, via
the methods:

interface SSLSession
{

Object getValue(String name);
String[] getValueNames();
void putValue(String name, Object value);
void removeValue(String name, Object value);

}

Session binding is provided for use by applications, �,�, to associate an applica-
tion context with a remote user. Implementors of session managers may find
some use for this feature.

Objects which want to know when they are being bound to or unbound from
an ���������� can implement the ����������>�����
�������� interface:

160 ���
���������	������������

interface SSLSessionBindingListener extends EventListener
{
void valueBound(SSLSessionBindEvent event);
void valueUnbound(SSLSessionBindEvent event);

}

The ���>���� method of an object which implements �������>�����
��������
is called whenever it is bound to a session via the ����������!���(��� method.
Similarly, the ���E������ method of an object which implements
�������>�����
���������is called whenever it is unbound from a session via the
����������!���� �(��� method.

Note that a �������>�����
�������� is not explicitly registered or deregistered
in any way: it is merely the ��� that a bound or unbound object extends
����������>�����
�������� which causes it to be notified.

!.& :���	��
�����5�

Each � �� session is bound to a �������������%�(representing a set of � �� sessions
associated with a single entity (a client or server) which participates in multiple
concurrent sessions. Session contexts are not supported in all environments.

The session context of a session can be obtained via the method:

interface SSLSession
{
SSLSessionContext getSessionContext();

}

In certain environments the session context may not be available, in which case
the method returns ����.13 If a security manager is installed, the permission:

javax.net.ssl.SSLPermission(“getSSLSessionContext”)

is required, otherwise a �������)	�������� is thrown. A session context is really a
kind of session manager with two policies:

(a) It can enforce a uniform session timeout on all sessions in the context.

(b) It can enforce a maximum number of sessions in the session cache (�,�,
available for resumption).

13. For example, in devices with extreme memory limitations such that session resumption isn’t
desirable at all, or a " � �� implementation layered on another underlying �� � implementation
which does not itself expose the ability to enumerate and manage the session cache.

�������������� 161

Session contexts can also be queried to list all available session IDs, or to retrieve
a specific session based on its ID. All these actions are controlled via the
methods:

interface SSLSessionContext
{

// Enumerate session IDs: returns Enumeration of byte[]
Enumeration getIds();

// Get SSLSession by ID
SSLSession getSession(byte[] sessionId);

// Get/set session cache size: zero means ‘no limit’.
int getSessionCacheSize();
void setSessionCacheSize(int size);

// Get/set session timeout in seconds:
// zero means ‘no limit’
int getSessionTimeout();
void setSessionTimeout(int seconds);

}

Session timeouts are expressed in seconds, where zero means no limit, which is
also the default. If a finite timeout has been set, a session times out the indicated
number of seconds after its creation time, after which it is invalidated as de-
scribed in section 7.6. If the timeout is changed, all sessions are immediately
checked for possible timeout. Note that this form of session timeout concerns
only its total lifetime since creation: it has nothing to do with its usage or last-
access time as returned by ����������!
�����$�������;���.

The size of the cache used for storing sessions in a session context can be con-
trolled by the ����������������?� method. The default value of this parameter
is zero, meaning no limit. The behaviour is unspecified when the limit has been
reached, or reduced when full: in Sun’s implementation, sessions are ejected
from the cache according to a least-recently-used policy.14 Ejected sessions are
not invalidated, but they will not be re-used by new connections.

The sessions bound to a session context can be enumerated as follows:

SSLSessionContext ctx; // initialization not shown …
Enumeration enum = ctx.getIds();
while (enum.hasMoreElements())
{
byte[] sessionId = (byte[])enum.nextElement();

14. See *�$�������) mailing list, 13–16 April, 2002.

162 ���
���������	������������

SSLSession session = ctx.getSession(sessionId);
// …

}

!.) " � ��
���
�������
� #$

You can do �������� channel I/O with secure sockets, using the stream-to-chan-
nel mapping facilities of the ������� class described in section 4.2.4:

SSLSocket socket;// initialization not shown
ReadableByteChannel rbc =
Channels.newChannel(socket.getInputStream());

WritableByteChannel wbc =
Channels.newChannel(socket.getOutputStream());

Neither of these channels is a ���"��������, and so neither of them can per-
form the operations associated with a real ���"��������, such as scatter-read,
gather-write, non-blocking I/O, registration with ���������, non-blocking con-
nect, or asynchronous closure. Nor can the D�����>)�������� perform
writes, or the K������>)�������� perform reads, again unlike a real
���"��������.

However, these channels certainly are fully-fledged fair-dinkum
D�����>)��������� and K������>)��������� respectively, and therefore
support the corresponding operations: reading into a >)��>�����, writing from a
>)��>�����, and synchronous closure.

Non-blocking " � ��
I/O is discussed in Chapter 8.

!.�* ���
���
��	

Neither the standard � �!��� socket factory classes ���"��C����) and
��� �����"��C����) nor the � �� socket factory classes ������"��C����) and
������ �����"��C����) described in section 7.4 implements the socket-factory
interfaces defined in the � !���!��� �� package (D�#���������"��C����) and
D�#��� �����"��C����)), even though they export the required methods.15

In "�� 1.5, Sun finally provided built-in ���D�#���������"��C����) and
���D�#��� �����"��C����) classes in the � �!���!��� package.

Prior to "�� 1.5, adapters must be written to use � � � socket factories with
��	 . This is a fairly trivial exercise in the Adapter pattern, as long as we remem-
ber two important aspects of ��	 socket factories:

15. This may possibly be to allow " � �� to fit into those Java Micro Edition profiles which do not
contain ��	 .

�������������� 163

(a) ��	 client socket factories must be serializable.

(b) ��	 socket factories must provide a plausible implementation of the
+�����!�H��� method, �,�, an over-ride which takes ��	 ’s serialization be-
haviour into account. Specifically, after beiung unmarshalled and deserial-
ized by ��	 , a single client socket factory instance at the server end be-
comes an instance per stub at the client end, and similarly the remote stub
itself becomes multiple instances if returned by multiple remote calls.

This indicates that socket factory equality cannot be based on object identity (the
default implemented by +�����!�H���) and instead should be at least based on
equality of object �������, or on class equality.16

The general technique for client socket factories is shown in Example 7.1.

public class SSLtoRMISocketFactoryAdapter
implements RMIClientSocketFactory, Serializable

{
public Socket createSocket(String host, int port)
throws IOException

{
SocketFactory factory = SSLSocketFactory.getDefault();
SSLSocket socket =
(SSLSocket)factory.createSocket(host, port);

// adjust cipher suites &c …
return socket;

}

public booleanequals(Object that)
{
return that != null
&& that.getClass() == this.getClass();

}
} // end class

45�����
!.� ��	 # � � � client socket factory

An RMI SSL server socket factory must also tell " � �� about the keystore via
one of the techniques discussed in section 7.3.3 or section 7.12, unless another
part of the application does so.

The general technique for server socket factories is shown in Example 7.2.

16. See Pitt & McNiff, *�,���.�0'��#���������'�
�����������&��
�, §§11.4–11.5. This point was
entirely overlooked by the ��	 examples supplied by Sun with " � � �prior to "�� 1.5.

164 ���
���������	������������

public class SSLtoRMIServerSocketFactoryAdapter
implements RMIServerSocketFactory

{

static // initializer
{
System.setProperty(“javax.net.ssl.keyStore”, …);
System.setProperty(“javax.net.ssl.keyStorePassword”, …);

}

public Socket createServerSocket(int port)
throws IOException

{
ServerSocketFactory factory =
SSLServerSocketFactory.getDefault();

SSLServerSocket serverSocket =
(SSLServerSocket)factory.createServerSocket(port);

// adjust cipher suites &c …
return serverSocket;

}

public booleanequals(Object that)
{
return that != null
&& that.getClass() == this.getClass();

}
} // end class

45�����
!.� ��	 # � �� server socket factory

!.�� (�,���	��

"��� includes a facility to trace its actions to �)����!���. This can be useful in
debugging problems such as handshake failures or unexpectedly poor perform-
ance. The trace facility is ‘not an officially supported feature of " � �� ’, but it is
present in all Sun versions to date.

Using this facility, you can have " � �� trace its actions down to an excruciating
level of detail.The choice of actions traced is controlled via keyword values set in
the system property � �!���!����
. See the "�� documentation for current de-
tails.17

17. Guide to Features: Security: " � � � Reference Guide.

�������������� 165

;,77,7 /%�!���

To debug ‘MyApp’ with some value of " � �� debugging:

java -Djavax.net.debug=XXX MyApp

where XXX is as follows:

(a) To view all debugging messages:

-Djavax.net.debug=all

(b) To view the hexadecimal dumps of each handshake message:

-Djavax.net.debug=ssl:handshake:data

(c) To view the hexadecimal dumps of each handshake message, and to print
trust manager tracing (the commas are optional):

-Djavax.net.debug=SSL:handshake:data:trustmanager

!.�� ���
����������

The true heart of the " � �� specification is the ���������� class. This class estab-
lishes the factory classes which control the operation of " � �� :

(a) the ������"��C����) and ������ �����"��C����), already encountered

(b) the /�)��
��C����), which supplies instances of the /�)��
�� inter-
face which are called to provide authentication certificates and private keys
to peers when they authenticate themselves to the remote peer

(c) the ;������
��C����), which supplies instances of the ;������
�� in-
terface which are called to establishing trustworthiness of certificates re-
ceived by peers when checking authentications received from the remote
peer.

The ���������� manages the ����������� associated with each instance of
������"��C����) or ������ �����"��C����), as well as the ������D���� ob-
ject used when generating session keys for these sessions.

Most of what the ���������� class and its friends do is beyond the scope of this
book, being for implementors of " � �� itself, or those doing fairly extraordinary
security manoeuvres. The ���������� ��	 discussed here is shown below.

166 ���
���������	������������

class SSLContext
{

SSLSessionContext getClientSessionContext();
SSLSessionContext getServerSessionContext();
static SSLContext getInstance(String protocol)
throws NoSuchAlgorithmException;

String getProtocol();
SSLServerSocketFactory

getServerSocketFactory();
SSLSocketFactory getSocketFactory();
void init(KeyManager[] km,

TrustManager[] tm,
SecureRandom secure)

throws KeyManagementException;
}

Note that the ���������� maintains separate ������������������ for servers and
clients.

;,72,7 �������'��!�����"�

The ���������� class and its friends can be used to control the authentication
keystore and truststore other than via system properties, or to provide an existing
������D���� object. If you are creating an ���	�
��� as discussed in
Chapter 8, you ���� create and initialize an explicit ����������.

An SSLContext is obtained via the static ����������!
��#������ method
shown above, where �������� is usually ‘TLS’ or ‘SSL’: for the complete list of
supported protocols see Appendix A, ‘Standard Names’, in the " � �� Reference
Guide provided with your "�� or your " � �� implementation.18

When an ���������� is explicitly created, it must be initialized by the
����������!���� method shown above. If the peer must authenticate itself (�,�, if it
is a server, or a client of a server where ����������$��� has been set), the context
���� be initialized with a ���$���� /�)��
��NO array.19 The technique is shown
in Example 7.3. The other parameters can be defaulted to ����.

18. Two other
��#������ methods not described here are used when a specific SSL
implementation provider is required.
19. The "�� 1.5 *�
�� documentation disagrees with its own " � �� Reference Guide on this
point. The former states ‘Either of the first two parameters may be null in which case the installed
security providers will be searched for the highest priority implementation of the appropriate
factory.’ The latter states ‘If the /�)��
��NO parameter is null, then an empty /�)��
�� will be
defined for this context. If the ;������
��NO parameter is null, the installed security providers
will be searched for the highest-priority implementation of the ;������
��C����), from which
an appropriate ;������
�� will be obtained.’ The latter is correct, and an ���������� initialized
with an empty /�)��
�� cannot authenticate itself.

�������������� 167

This technique might be preferred if, for example, you don’t want to expose the
keystore password globally as a system property. Note that the �������� pa-
rameter of /�)�����!��� only causes the keystore to be checked for integrity on
opening; the passphrase is really only required by the /�)��
��C����)!����
method, to give it access to private key entries (i.e. to allow it to call the
/�)�����!
��/�) method). This technique is entirely equivalent to the technique
we encountered earlier using system properties, shown again for easy compari-
son in Example 7.4.

You can use a similar technique to control the trust-store. The trust-store is
supplied as the second parameter to the ����������!���� method. The trust-store
doesn’t contain private key entries, so you don’t need to supply its passphrase at
all, for the reason discussed in the previous paragraph; therefore, the
;������
��C����)!���� method doesn’t have a �������� parameter. This
technique is shown in Example 7.5.
The �'��
 parameter to the ����������!���� method is a ������D���� object. If
you initialize one of these in parallel with your main initialization and then sup-

KeyManagerFactory kmf =
KeyManagerFactory.getInstance("SunX509");

KeyStore ks = KeyStore.getInstance("JKS");
File keysFile = new File(…);
String passphrase = …;
ks.load(new FileInputStream(keysFile),
passphrase.toCharArray());

kmf.init(ks, passphrase.toCharArray());
SSLContext sslContext = SSLContext.getInstance("TLS");
sslContext.init(kmf.getKeyManagers(),

/*TrustManager[]*/null,
/*SecureRandom*/null);

SSLServerSocketFactory ssf =
sslContext.getServerSocketFactory();

45�����
!.� Hard-coded keystore setup

System.setProperty(“javax.net.ssl.keyStore”,
keysFile.toString());

System.setProperty(“javax.net.ssl.keyStorePassword”,
passphrase);

SSLServerSocketFactoryssf =
(SSLServerSocketFactory)
SSLServerSocketFactory.getDefault();

// at this point you might like to clear keyStorePassword

45�����
!.� Keystore setup via system properties

168 ���
���������	������������

ply it to the ����������!���� method, you can eliminate or at least reduce the an-
noying pause when creating the first ������"�� or ������ �����"�� referred to
in section 7.3.2. ���������� initialization using all three parameters is demon-
strated in Example 7.6.

!.�� D����������	���

Although the Java implementations of � � � work reasonably well by default once
installed correctly, there are still better and worse ways to use � � � .

Unless you are writing a server which must support clients from anywhere
(�,�, the entire Internet), you should limit the cipher suites you are prepared to
use via the techniques discussed in section 7.5.4. The cipher suites you use
should be commensurate with the value of your data.20

;,78,7 &��������������
�����

(a) Send data in the largest chunks possible: use buffered input and output
streams over the streams obtained from the socket, with the largest possible
buffer size, and flush the output as infrequently as possible, (ideally, only
before reading. The buffer for the >�������+���������� should be at least
16384 bytes.

(b) ������� should use long session expiry times and a large or uncontrolled ses-
sion cache size, as clients generally only deal with a few servers simultane-
ously.

TrustManagerFactory tmf =
TrustManagerFactory.getInstance("SunX509");

KeyStore ks = KeyStore.getInstance("JKS");
File trustFile = new File(…);
ks.load(new FileInputStream(trustFile), null);
tmf.init(ks);
SSLContext sslContext = SSLContext.getInstance("TLS");
sslContext.init(/*KeyManager[]*/null,
tmf.getTrustManagers(),
/*SecureRandom*/null);

SSLServerSocketFactory ssf =
sslContext.getServerSocketFactory();

45�����
!. Trust-store setup via hard-coding

20. For recommendations on �� � security and performance in greater detail in Rescorla, � � � ��

�� � , §§5.7, 6.8, & 6.18.

�������������� 169

(c) ������� should use a short session expiry time or a small session cache size,
as they deal with a large number of clients simultaneously, and the time and
space costs multiply rapidly.

(d) If clients won’t actually reconnect within the session expiry interval, �� ses-
sion management at the server is a waste of resources, so set the server’s
session cache size to one (zero means no limit).

// Initialize key manager factory.
KeyManagerFactory kmf =
KeyManagerFactory.getInstance("SunX509");

KeyStore ks = KeyStore.getInstance("JKS");
File keysFile = new File(…);
String passphrase = …; // supply your own value
ks.load(new FileInputStream(keysFile),
passphrase.toCharArray());

kmf.init(ks, passphrase.toCharArray());

// Initialize trust manager factory.
TrustManagerFactory tmf =
TrustManagerFactory.getInstance("SunX509");

File trustFile = new File(…);// supply your own value
ks.load(new FileInputStream(trustFile), null);
tmf.init(ks);

// Initialize the source of secure random numbers.
// (You can do this asynchronously during startup to
// eliminate the delay creating the first
// SSLSocket/SSLServerSocket.)
SecureRandom secureRandom = new SecureRandom();
secureRandom.nextInt();

// Get the SSL context instance.
SSLContext sslContext = SSLContext.getInstance("TLS");
// Initialize it
sslContext.init(kmf.getKeyManagers(),
tmf.getTrustManagers(),
secureRandom);

// Get the server socket factory.
SSLServerSocketFactory serverSocketFactory =
sslContext.getServerSocketFactory();

// Get the client socket factory.
SSLSocketFactory clientSocketFactory =
sslContext.getSocketFactory();

45�����
!.� ����������!����—all parameters

170 ���
���������	������������

(e) Use the shortest private keys compatible with your security requirements:
768 bits is strong enough for most commercial transactions, although 1536
bits is almost certainly too short for highly valuable data.

;,78,2 �����%�����!���������

(a) Use ��� for asymmetric algorithms.

(b) Use
��4-128 for symmetric encryption.

(c) Use
��� -1 for message authentication.21

(d) Maximise connection pooling at the client.

(e) Maximise session resumption, and expire sessions at the maximum reason-
able interval within the �-� recommendation of 24 hours.

(f) Change cipher suites at long intervals, say hours.

;,78,8 �����%������������)

(a) Use
� �� for asymmetric algorithms.22

(b) Use
 ���3 for symmetric encryption: this is more secure than �� -4, but
about ten times as slow.

(c) Use
��� -1 for message authentication.

(d) Minimise connection pooling at the client.

(e) Minimize session resumption, or expire sessions frequently, say once or
twice an hour.

(f) Change cipher keys at short intervals, say minutes.

!.�� �����

As well as supporting secure ��� via a socket-level ��	 , " � �� also supports the
����� protocol via the standard Java ��� �� 	 . This allows Java applications to
be clients of, and to communicate securely with, ��� - or � �� -enabled web servers
by using the ‘https’ ��� protocol and the � !���!ED� class. Most of the com-
mon Web serverssupport ‘�����’ ��� schemes, for example:

21. �� is faster, but only by about 40%, and it is being phased out.
22. ��� is 2–10 times as slow as ��� , without being appreciably more secure, although this
choice may actually be determined more by cost, compatibility requirements, intellectual property
issues, or �� export restrictions.

�������������� 171

https://www.verisign.com

" � �� provides an implementation for the ‘�����’ ��� scheme. If you are using
"�� 1.3 and " � �� , rather than "�� 1.4 or later where these are unified, you must
enable this implementation by setting the system property
� !��������!������!�"
� to ���!���!���!���!�������!'''!��������, either on
the command line or programmatically. (This enables the relevant
ED������B����� for the protocol scheme.) You can then use ‘�����’ URLs in
Java as shown in Example 7.7.

URL url = new URL(“https://www.verisign.com”);
URLConnectionconn = url.openConnection();
InputStream in = conn.getInputStream();
// or, combining the two previous lines
InputStream in = url.openStream();
// etc as usual

45�����
!.! ����� ��� usage

The ED����������� which was obtained in Example 7.7 is an object of type
���!���!���!���!B����ED����������� or � �!���!���!B����ED�����������, de-
pending in a complex way on the "�� version and the value of the system prop-
erty � !��������!������!�"
� as shown in Table 7.3.

The B����ED����������� class extends � !���!B���ED����������� in both
the packages ���!���!���!��� and � �!���!���.

A different ‘�����’ protocol implementation can be used by setting the system
property � !��������!������!�"
� to the name of the supporting package
name, as described in the *�
�� for the � !���!ED� class. Many common Web
browsers support ‘�����’ schemes.

The trust and key management for the ‘�����’ ��� implementation is environ-
ment-specific, �,�, varies with the implementation.

��,��
!.� B����ED����������� type

"�� (�)�*
�������*��!����*
%���)���� +��
�,-.#����	�������

< 1.4
+
" � ��

���!���!���!���!�������!'''!�������� ���!���!���!���!B����ED�����������

≥ 1.4 ���!���!���!���!�������!'''!�������� ���!���!���!���!B����ED�����������

≥ 1.4 Not set � �!���!���!B����ED�����������

172 ���
���������	������������

!.� 45����	���
	�
" � ��

The exceptions defined by " � �� form part of the inheritance tree shown in
Figure 7.4.

Exceptions thrown by " � �� are described in Table 7.5.

��,��
!.� Hierarchy of " � �� exceptions

	��������

⎩�D������	��������

⎩ #+	��������

⎩ ⎩ ���	��������
⎩ ⎩ ⎩ ���B����"�	��������

⎩ ⎩ ⎩ ���/�)	��������
⎩ ⎩ ⎩ ���:���E� �������	��������

⎩ ⎩ ⎩ ���:�������	��������

��,��
!. Exceptions in � � �

����
�	� �����	
�	�

D������	��������:
no cipher suites in
common

The intersection of the client's ciphersuite set with the
server's ciphersuite set is empty. For example,
Netscape Navigator and Internet Explorer only enable
��� -based cipher suites. If the server only enables
��� -based cipher suites, this condition will occur.

���"��	�������� ‘No � �� Server Sockets’ or ‘� �� implementation not
available’ both indicate incorrect installation: see
section 7.3.2.

���	�������� ‘No available certificate corresponding to the � � �
cipher suites which are enabled’: the enabled cipher
suites and available keystores do not match. An
enabled cipher suite can only be used if the keystore
contains a corresponding key entry: for example, if an
��� cipher suite is enabled, an ��� key entry must be
available in the keystore, otherwise the ��� cipher
suite cannot be used. If there are no available key
entries for all of the cipher suites enabled, this
exception is thrown.

���B����"�	�������� The server and client could not negotiate the required
level of security. The connection is now unusable.

�������������� 173

!.�� ���
�0����
�������	��

The major system properties affecting the operation of ��� in Java are shown
in Table 7.6.

���/�)	�������� A bad � � � key was encountered, usually indicating
misconfiguration of the server or client certificate and
private key.

���:���E� �������	�������� The peer was not verified: thrown if the application
attempts to retrieve peer certificates for a peer which
did not authenticate itself, �,�, because the negotiated
cipher suite did not support it, peer authentication
(�,�, client authentication) was not established during
the handshake, or no certificate existed at the peer.

���:�������	�������� Indicate an error in the protocol operation. Normally
this indicates an error in the local or peer
implementation, but it can also occur if you
deliberately violate the protocol, �,�, by connecting an
ordinary ���"�� to an ������"��; wrapping a ���"�� in
an ������"�� as described in section 7.6.4 and then
performing I/O with the ���"�� rather than the
������"��; or bypassing the record layer as discussed
in section 7.9.

��,��
!.� System properties in " � ��

���� ������ �����	
�	�

�����!������������ no default Comma-separated list
of cipher suite names
specifying which
cipher suites to enable
for use on objects of
type
B����ED�����������

�����!��������� no default Comma-separated list
of protocol suite
names specifying
which protocol suites
to enable on objects of
type
B����ED�����������

��,��
!. Exceptions in � � � (continued)

����
�	� �����	
�	�

174 ���
���������	������������

These properties are currently used by Sun’s " � �� implementation: they are
not guaranteed to be examined and used by other implementations, but if they
are, they should behave in the same way as the " � �� implementation does. The
table is accurate for " � �� 1.0.3 and "�� 1.5, but there is no guarantee that the
properties will continue to exist or be of the same type (system or security) in
future releases.

Other properties exist for customizing various security factories and
algorithms: consult the "�� or " � �� documentation for these.

�����!����)B��� no default Same as
����!����)B��� but for
‘�����’

�����!����):��� no default Same as
����!����):��� but for
‘�����’

� !���!��������!������!�"
� no default See text in this section

� �!���!����
 See section 7.11 Controls debug
tracing

� �!���!���!"�)����� filename, no default Location of key store
used by peers which
authenticate
themselves: by default
this includes all " � ��
servers

� �!���!���!"�)�����:��'��� no default Key store password

� �!���!���!"�)�����;)�� default is given by
/�)�����!
��������;)��

Key store
implementation type,
�,�, ‘JKS’

� �!���!���!���������� filename: default is
���������� if it exists,
otherwise ������

Location of trust store
used by peers which
request
authentication: by
default this includes
all " � �� clients

� �!���!���!����������:��'��� no default Trust store password.
Normally not needed:
see section 7.12

� �!���!���!����������;)�� default is given by
/�)�����!
��������;)��

Trust store
implementation type,
�,�, ‘JKS’

��,��
!.� System properties in " � �� (continued)

���� ������ �����	
�	�

�������������� 175

!.�! :�����
� � �
��	���
���
������

The sample � �� client and server shown in this section exhibit good practice as
described in section 7.13, �,�, practical session management and efficient use of
buffering. The server can be further improved using the ideas of Chapter 12.

;,7;,7 �������$���������A�������

// SessionManagedSSLServer.java

public class SessionManagedSSLServer
implements HandshakeCompletedListener, Runnable

{

// Session management parameters.
// In a practical implementation these would be defined
// externally, e.g. in a properties file.
// Cache up to four sessions

static final int SESSION_CACHE_SIZE = 4;
// Time sessions out after 15 minutes.
static final int SESSION_TIMEOUT = 15*60; // 15m

private SSLContext sslContext;
private SSLServerSocketFactory serverSocketFactory;
private SSLServerSocket serverSocket;

// Replace with your own local values …
static final File keysFile = new File(“…”,“testkeys”);
static final String passPhrase = “passphrase”;

static // initialization
{

// Alter as required
// System.setProperty(“javax.net.debug”,“ssl”);
}

/**
 * Create new SessionManagedSSLServer
 * @param port Port to listen at
 * @exception IOException creating socket
 * @exception GeneralSecurityException initializing SSL
 */

public SessionManagedSSLServer(int port)
throws IOException, GeneralSecurityException

{
if (sslContext == null)
{
KeyManagerFactory kmf =

176 ���
���������	������������

KeyManagerFactory.getInstance("SunX509");
KeyStore ks = KeyStore.getInstance("JKS");
File keysFile = new File(…);
String passphrase = …;
ks.load(new FileInputStream(keysFile),
passphrase.toCharArray());

kmf.init(ks, passphrase.toCharArray());

this.sslContext = SSLContext.getInstance(“TLS”);
sslContext.init(kmf.getKeyManagers(),null,null);
// Configure the server session context (1.4-specific)
SSLSessionContext serverSessionContext =
sslContext.getServerSessionContext();

serverSessionContext
.setSessionCacheSize(SESSION_CACHE_SIZE);

serverSessionContext
.setSessionTimeout(SESSION_TIMEOUT);

this.serverSocketFactory =
sslContext.getServerSocketFactory();

}
this.serverSocket =
(SSLServerSocket)
serverSocketFactory.createServerSocket(port);

}

/** handshakeCompleted callback.
 * Called whenever a handshake completes successfully.
 * Handshaking is usually asynchronous, but no I/O is done
 * on the socket until a handshake completes successfully,
 * so there is no need to synchronize anything with the
 * completion of this method.
 */

public void handshakeCompleted
(HandshakeCompletedEvent event)

{
String cipherSuite = event.getCipherSuite();
// Ensure cipher suite is strong enough, not shown …

try
{
// (JDK 1.4)
java.security.cert.Certificate[] peerCerts =
event.getPeerCertificates();

X509Certificate peerCert =
(X509Certificate)peerCerts[0];

�������������� 177

// Verify distinguished name of zeroth certificate.
Principal principal = peerCert.getSubjectDN()
// check principal.getName() &c against expectations,
// not shown …

}
catch (SSLPeerUnverifiedException exc)
{
// do whatever is required, e.g. close the socket

}
} // handshakeCompleted()

/** @see java.lang.Thread#run() */
public void run()
{
for (;;)
{
try
{
SSLSocket socket =
(SSLSocket)serverSocket.accept();

socket.addHandshakeCompletedListener(this);
new ConnectionThread(socket).start();

}
catch (IOException exc)
{
// …

}
} // for (;;)

} // run()

class ConnectionThread extends Thread
{
SSLSocket socket;

ConnectionThread(SSLSocket socket)
{
this.socket = socket;

}

public void run()
{
try
{

// Choose whichever of these suits your situation ...
// socket.setWantClientAuth(true);
// socket.setNeedClientAuth(true);

InputStream in =
new BufferedInputStream

178 ���
���������	������������

(socket.getInputStream(),8192);
OutputStream out =
new BufferedOutputStream
(socket.getOutputStream(),8192);

// Handle the conversation ...
}
catch (SSLException exc)
{
// Treat this as a possible security attack …

}
catch (IOException exc)
{
// Treat this as a network failure …

}
finally
{
try
{
socket.close();

}
catch (SSLException exc)
{
// Handle possible truncation attack, not shown ...

}
catch (IOException exc)
{
}

} // finally
} // run()

} // class ConnectionThread
} // class SessionManagedSSLServer

45�����
!.& Sample � �� server

;,7;,2 �������$���������A�������

// SessionManagedSSLClient.java

public class SessionManagedSSLClient
implements HandshakeCompletedListener

{

�������������� 179

// Session management parameters.
// In a practical implementation these would be defined
// externally, e.g. in a properties file.
// Cache up to ten sessions

static final int SESSION_CACHE_SIZE = 10;
// Time sessions out after 1 hour.
static final int SESSION_TIMEOUT = 60*60; // 1h

private SSLContext sslContext;
private SSLSocketFactory socketFactory;
private SSLSocket socket;

static // initializer
{
// as required
// System.setProperty(“javax.net.debug”,“ssl”);

}

/**
 * Create new SessionManagedSSLClient
 * @param host target host
 * @param port target port
 * @exception IOException creating socket
 * @exception GeneralSecurityException initializing SSL
 */

public SessionManagedSSLClient(String host, int port)
throws IOException, GeneralSecurityException

{
if (sslContext == null)
{
this.sslContext = SSLContext.getInstance(“TLS”);
sslContext.init(null,null,null);
// Configure client session context: JDK 1.4-specific
SSLSessionContext clientSessionContext =
sslContext.getClientSessionContext();

clientSessionContext
.setSessionCacheSize(SESSION_CACHE_SIZE);

clientSessionContext
.setSessionTimeout(SESSION_TIMEOUT);

this.socketFactory = sslContext.getSocketFactory();
}
this.socket =
(SSLSocket)socketFactory.createSocket(host,port);

socket.addHandshakeCompletedListener(this);
}

180 ���
���������	������������

/** Handle conversation */

public void handleConversation()
{
try
{
InputStream in =
new BufferedInputStream
(socket.getInputStream());

OutputStream out =
new BufferedOutputStream
(socket.getOutputStream(),8192);

// …
}
catch (SSLException exc)
{
// Treat this as a possible security attack …

}
catch (IOException exc)
{
// Treat this as a network failure …

}
finally
{
try
{
socket.close();

}
catch (SSLException exc)
{
// Handle possible truncation attack, not shown …

}
catch (IOException exc)
{
// …

}
socket = null;

} // finally
} // handleConversation()

/** handshakeCompleted callback.
 * Called whenever a handshake completes successfully.
 * Handshaking is usually asynchronous, but no I/O is done
 * on the socket until a handshake completes successfully,

�������������� 181

 * so there is no need to synchronize anything with
 * the completion of this method.
 */

public void handshakeCompleted
(HandshakeCompletedEvent event)

{
String cipherSuite = event.getCipherSuite();
// Ensure cipher suite is strong enough, not shown …

try
{

// (JDK 1.4)
java.security.cert.Certificate[] peerCerts =
event.getPeerCertificates();

X509Certificate peerCert =
(X509Certificate)peerCerts[0];

// Verify the distinguished name (DN)
// of the zeroth certificate.
Principal principal = peerCert.getSubjectDN()
// check principal.getName() &c against expectation,
// not shown …

}
catch (SSLPeerUnverifiedException exc)
{
// Handle this as required …

}
} // handshakeCompleted()

} // class SessionManagedSSLClient

45�����
!.) Sample � � � client

!.�& ���
1���
��� % �� 	

The "��� % �� 	 or Java Genetic Security Services Application Programming In-
terface was introduced in "�� 1.4 as a standard part of the " ��� platform. "���
is an implementation of �-� 2743, which defines the Generic Security Service
Application Program Interface (��� -��) as a language-independent specifica-
tion, and �-� 2853 which defines a Java-specific language binding for it.23

The following is quoted from the abstract of �-� 2853:

23. Linn, J., �-� 2743, &��������������)��������� !!������������������������=�������2(��!
���7,
January 2000; Kabat ����,, �-� 2853, &��������������)��������� ���=�������2.����"��
����, June
2000.

182 ���
���������	������������

I0'��&��������������)���������� !!������������������������5��� %�� 	 6��������!$
!��������!����������������������������������)������������!�������)������
���)$
������)!����!'������'������N�0'����� %�� 	 ����	���������!!�����������N�!$
!�)� �������)� ��������� ���'��� �����
�������)��
� ��������)�����!��$�����������,
/%�!��������������)����'������
�����
�������� %�� 	 �����'�����!���������$M�)
��� %�� 	 ����'�����K���� L��
��'��M��������=�������4���� %�� 	 ����'����
K���,� L,J

The "��� % �� 	 provides another approach to network security: it can be used as
an alternative to " � �� in environments which support security mechanisms de-
fined for ��� %�� 	 : typically, this means Kerberos.

Unlike " � �� , whose design consists of a façade over the Java Sockets classes,
and which invisibly applies encryption and decryption to an authenticated data
stream, the ��� %�� 	 is concerned entirely with the messages themselves, not
with the communications technology: this is one reason why it is labelled ‘ge-
neric’.24

When using the "�� � %�� 	 , a network connection is formed entirely with the
� !���!���"�� and � !���!��� �����"�� classes. Authentication can be per-
formed if required using the complementary " ��� (Java Authentication and Au-
thorization Service) which is beyond the scope of this book. The "��� %�� 	 is
then used in three ways:

(a) To form a session or ‘shared context’ within which subsequent exchanges of
data can be made secure.

(b) To 	�! messages as ‘tokens’ for sending to the recipient: these may be en-
crypted, digitally signed, ���. ����>����
��)��'����
���
���������,

(c) To ��	�! received tokens into messages.

(d) To end the session.

In the "��� % �� 	 , an input stream can be wrapped and written directly to an out-
put stream, or a byte array can be wrapped and returned as a token in another
byte array; conversely, an input stream can be unwrapped and written directly to
an output stream, or a received token byte array can be unwrapped as a message
in a byte array. A message which was wrapped from a byte array can be un-
wrapped from an input stream and ���������.25

When wrapping, message properties are supplied which specify 5�6 the re-
quired quality-of-protection (=��) and 5��6 whether or not encryption is re-
quired. =�� is defined as an integer whose precise meaning is defined by the
underlying security provider (�,�, Kerberos). This information is recorded se-

24. Others being its language-neutrality and its independence of specific cryptographic
technology.
25. Because byte arrays can be used as inputs and outputs, the "�� � % �� 	 can also be used with
��� .

�������������� 183

curely in the resulting token. When a token is received and unwrapped into a
message, it is decrypted if the token was encrypted; its signature is verified if the
token was signed; ���. These decisions are based purely on the message-proper-
ties information contained (securely) within the token itself. The recipient does
not need to know whether the token was originally decrypted, signed, ���,: the
token protocol is self-describing and self-enforcing. The wrap and unwrap opera-
tions also support token expiry, sequencing, and detection of duplicates.

The "��� % �� 	 therefore has the following interesting properties:

(a) Different levels of security can be applied to different messages by the
sender.

(b) The level of security applied to a message can be varied arbitrarily at any
time without affecting the recipient or the application protocol. For exam-
ple, zero security can be used over trusted internal network link, and the
highest level used over Internet links, depending on who the recipient is, its
location, ���.

The "��� %�� 	 is primarily implemented in the package ��
!����!�
��. For further
information on the "��� % �� 	 , see the online "�� documentation, following the
links Guide to Features, Security and Signed Applets, Java "��� %�� 	 .

185

�������
& ��������������
�������

��	�
 �������
 �	������� scalable secure sockets, showing how to obtain
the security features of the previous chapter in a scalable architecture.

&.� ���������	��

C,7,7 0'��!������

Channel I/O and ������"��� are largely strangers when they meet. You might
think you can create a ��������	

�� first, connect it, and then wrap its socket as
an ��������� :

String host;// initialization not shown …
int port;// initialization not shown …
SocketChannel channel= SocketChannel.open();
Socket socket = channel.socket();
SocketAddress address= new InetSocketAddress(host, port);
socket.connect(address);
SSLSocketFactory sslFactory =
(SSLSocketFactory)SSLSocketFactory.getDefault();

SSLSocket sslSocket=
sslFactory.createSocket(socket, host, port, true);

Well, you ��, but let’s look into it further. At this point you have a ��������	

��
and an ���������. However, the input and output of the channel are connected
to the lower-level I/O of the underlying ������, not the higher-level I/O of the
���������, which implements the � � � record protocol, so writing or reading the
channel would bypass the record protocol, �,�, would violate the ��� # � � �
specification: this will most likely cause the other end to fail with an

186 ���
���������	������������

������������������
. To get around this, you must confine yourself to using the
���������’s input and output streams, possibly wrapped as further channels,
making the original ��������	

�� basically pointless.

Nor can you put the channel into non-blocking mode and expect to be able to
select on it. The ��������� uses stream I/O in both the record protocol and the
handshake protocol, but, as we saw in section 4.2.4, if you put the channel into
non-blocking mode, stream I/O fails with an �����	�������
�������������
.

This means that to use this scheme you would have to use blocking mode and
streams for the actual I/O, and non-blocking mode when selecting. Having to
use blocking I/O implies having to commit a thread, whereupon the scalability
advantage of non-blocking I/O and selection is lost.

C,7,2 0'����������

Instead of providing the obvious ������"��������, Sun have provided a lower-
level construct called the ���	�
��� in "�� 1.5. This ‘engine’ deals only with the
data and leaves all I/O up to the caller, so it is capable of handling not only secure
sessions via socket streams or channels but also via datagram sockets, files,
pipes, or any other data stream that can be imagined.1

This means that scalable secure sockets can be implemented in Java using the
�	�	��
����������	�
��� class introduced in "�� 1.5 (Java 5) in conjunction with
the channel I/O features of the �	�	�
�����	

��� package described in Chapter 5.

In this chapter we will examine the application of the ���	�
��� to non-block-
ing ���"��������� in conjunction with ���������.

&.� ���
���	�
���
�����

The ���	�
��� class enables applications to deal in secure protocols such as � ��
and ��� but is transport-independent. It does not deal with sockets or channels
or streams: it deals only with >)��>������.

It is therefore possible to use the ���	�
��� in conjunction with non-blocking
I/O, a very important advantage for the server side of secure communications
protocols.

Unfortunately, Sun’s solution means that using � � � over socket channels is
extremely complicated.

1. The demand was for an ������"��������. Why Sun didn’t respond to it directly, or by
providing ���' the ���	�
��� �
 an ������"�������� built using it, is a good question. Another
good question is why they provided something that requires users to be able to write a state
machine and to have a working knowledge of �-� 2246 to implement correctly.

��������������������� 187

C,2,7 ���������'��!��#$��

An ���	�
��� is obtained from an �������B�
 ���������� (created as described
in section 7.12.1) via the method:

class SSLContext
{
SSLEngine createSSLEngine();
SSLEngine createSSLEngine(String host, int port);

}

Providing the target ���� and ���� gives the ���������� hints about session shar-
ing, and is strongly recommended!

C,2,2 !��#$������'�
�

The ���	�
��� exports the following principal methods of interest:

class SSLEngine
{
SSLEngineResult unwrap(ByteBuffer src, ByteBuffer dst)

throws SSLException;
SSLEngineResult unwrap(ByteBuffer[] src, ByteBuffer dst)

throws SSLException;
SSLEngineResult unwrap(ByteBuffer[] src, int offset,
int length, ByteBuffer dst)
throws SSLException;

SSLEngineResult wrap(ByteBuffer src, ByteBuffer dst)
throws SSLException;

SSLEngineResult wrap(ByteBuffer src, ByteBuffer[] dst)
throws SSLException;

SSLEngineResult wrap(ByteBuffer src, ByteBuffer[] dst,
int offset, int length)
throws SSLException;

}

where the rather boringly named '���and ��'�� operations respectively ����
�
data to be sent to the peer and
���
� data received from the peer.

C,2,8 �����������'�
�

The ���	�
��� also exports these methods for use when closing a secure session:

188 ���
���������	������������

class SSLEngine
{
boolean isInboundDone();
boolean isOutboundDone();
void closeInbound() throws SSLException;
void closeOutbound() throws SSLException;

}

These require comment.

The apparent naming confusion between ‘close’ and ‘done’ is there because
��#���������� can be true even if you haven’t called �����#������ yourself: the
condition can arise as a result of unwrapping an incoming ��� �����9�����)
packet from the peer. (Such a packet could result from the peer calling
�����+������� and '�� and then writing the result to the network.)

Similarly, ��+����������� is true if you have called �����+�������� but also
if you have unwrapped an incoming �����9�����) as described above. The engine
automatically responds to this by returning the resulting &		�9KD$: condition
described in section 8.2.4 below: if you respond correctly to this by calling
���	�
���!'��� it will wrap an outgoing �����9�����) and set the
��+����������� condition to true.

There are strict rules specified in �-� 2246 about closing ��� # � � � connec-
tions,2 which must be obeyed if the inherent security in ��� # � �� is to be real-
ized. As shown in Table 8.1, the application needs to have an understanding of
�-� 2246 in order to implement closing of the connection correctly.

C,2,9 �������'��!��#$�������.��������
�G�
�'�������

As we would hope and expect, the ���	�
��� takes care of all handshaking and
establishment of secure sessions. However this still makes the engine rather dif-
ficult to use in practice. What appears to be a simple read or write—��'�� or
'�� in the SSLEngine’s terminology—may require several interspersed reads
and writes to accomplish the session handshake before the application’s read or
write can complete, and these can occur at any point during the exchange of data
with the peer (because either peer can request a new handshake at any time).

The ���	�
���D����� returned by '�� and ��'�� therefore contains �	� sta-
tus indicators: an ���	�
���D�����!����� item, which indicates the ��������������$
���� ��� �'�� �!������� *���� ����
, and an ���	�
���D�����!B����"������ item
which indicates 	'���'���������	�������
����%�.

These are defined using the "�� 1.5 ���� facility as follows:

2. �-� 2246 §7.2.1.

��������������������� 189

class SSLEngineResult
{
enum Status
{
BUFFER_OVERFLOW, // insufficient room in target buffer
BUFFER_UNDERFLOW, // no data in source buffer
CLOSED, // engine has been securely closed
OK; // operation completed successfully

}

enum HandshakeStatus
{
FINISHED, // just finished handshaking
NEED_TASK, // application must run a delegated task
NEED_UNWRAP, // application must perform an unwrap
NEED_WRAP, // application must perform a wrap
NOT_HANDSHAKING;// no handshaking in progress

}

Status getStatus();
HandshakeStatus getHandshakeStatus();

}

It is a mistake to consider these indicators in combination. The ����� values
need to be interpreted in the context of the operation just attempted, as shown in
Table 8.1.

��,��
&.� ���	�
���D�����!����� values

'
����	� ����� ���	�

��'���
'��

+/ The operation completed successfully; the
application can continue.

��'�� ��+�	� Received an incoming ��� �����9�����): the
peer has closed its end of the connection.
The application ���� continue processing
the B����"������; the engine will want to
wrap an outgoing �����9�����).

190 ���
���������	������������

The B����"������ values are independent of the operation just attempted,
but not of the ����� value returned by it, so the operation just attempted must be
retried if necessary as shown in Table 8.1 before the operation indicated by the
B����"������ can be carried out as shown in Table 8.2.

'�� ��+�	� If the engine was not already closed, the
application has just closed this side of the
engine (by calling ���	�
���!�����+�������
and '��). The application must write the
wrapped data (a ��� �����9�����)) to the
socket. If the application was the initiator of
the close it �) then try to read and unwrap
an incoming �����9�����), but it only ���� do
so if it was not the initiator of the close,
which is the case described above for
5��'�����+�	�U. However it must not
receive or transmit any more data, and the
���	�
��� will not permit it to do so.

��'�� >ECC	D9+(DC�+K Target buffer overflow: the application needs
to remove data from the target buffer of the
��'�� operation and repeat the ��'��.

>ECC	D9E&�	DC�+K Nothing to unwrap: the application needs to
obtain more data from the peer and repeat
the ��'��.

'�� >ECC	D9+(DC�+K Target buffer overflow: the application needs
to send the target buffer of the '�� (encode)
operation to the peer and repeat the '��.

>ECC	D9E&�	DC�+K Nothing to wrap: no data was present in the
source buffer.

��,��
&.� ���	�
���D�����!B����"������ values

����� ���	�

C#&#�B	� The ���	�
��� has just finished handshaking.

&		�9;$�/ The ���	�
��� needs the results of one or more tasks which
may block.

&		�9E&KD$: The ���	�
��� needs to receive and unwrap data from the
remote peer.

��,��
&.� ���	�
���D�����!����� values (continued)

'
����	� ����� ���	�

��������������������� 191

The handshake status can also be obtained from the ���	�
���:

class SSLEngine
{
SSLEngineResult.HandshakeStatus getHandshakeStatus();

}

The application must provide four >)��>������: two application buffers for
plaintext (one for sent and one for received data), and two packet buffers for en-
crypted data (one for sent and one for received data), as follows:

(a) An application send buffer, of arbitrary size, used to hold application data
waiting to be encoded and sent to the peer.

(b) A packet send buffer, whose size must be at least equal to the value returned
by ����������!
��:�"��>�������?�, used to hold encoded data for sending
to the peer (after being encoded from the application send buffer).

(c) A packet receive buffer, whose size must be at least equal to the value re-
turned by ����������!
��:�"��>�������?�, used to receive encoded data
from the peer (for decoding into the application receive buffer).

(d) An application receive buffer, whose size must be at least equal to the value
returned by ����������!
��$���������>�������?�, used to hold data decoded
after receipt from the peer.

C,2,4 �����)

All this really makes the ���	�
��� rather a luxury for the client side of an appli-
cation. However the advantages of non-blocking I/O for the server side of an ap-
plication are so irresistible that it is well worth exploring how to best make use of
the engine.

&.� (��	��	��
��
���	�
�����
��
�����

We will design and implement an ���	�
�����
���class that is a bit like a
������ in that it has methods for reading, writing, and closing, and is designed

&		�9KD$: The ���	�
��� needs to wrap and send data to the remote
peer.

&+;9B$&��B$/#&* The ���	�
��� is not currently handshaking.

��,��
&.� ���	�
���D�����!B����"������ values (continued)

����� ���	�

192 ���
���������	������������

to be operated in non-blocking mode. It delegates all its I/O to a ���"��������,
manages all the >)��>������ described above, and delegates all ��� processing to
an ���	�
���. Its principal methods will be as follows:

class SSLEngineManager
{
// Constructor
SSLEngineManager(SocketChannel channel, SSLEngine engine);

int read() throws IOException;
int write() throws IOException;
void close() throws IOException;

ByteBuffer getAppRecvBuffer();
ByteBuffer getAppSendBuffer();

SSLEngine getEngine();
}

C,8,7 �����������.�
�����

The constructor will take two arguments:

(a) A ���"��������, assumed to be connected and non-blocking, resulting ei-
ther from ���"��������!���� or ��� �����"��������!����� depending
on whether the application is a client or a server, and

(b) An initialized ���	�
���, assumed to be in client or server mode as required
by the application and to have had any other required initialization already
performed such as requiring client authentication, selection of protocols
and cipher suites, ���.

The constructor will create the four >)��>������ described above at the appropri-
ate sizes and make the application send and receive buffers available via the ac-
cessor methods shown above.

C,8,2 ���%����'�
.�
�����

The ��� method will assume 5�6 that there is space in the application receive
buffer, and 5��6 that the application has waited for +:9D	$� before calling it. It
will take no arguments and may throw an #+	��������. It will behave correctly if
no data is available, or if an end-of-stream indication is received, either in the
form of a ��� �����9�����) packet which indicates an orderly ��� end of stream or
a physical ��- which indicates a possible truncation attack, where in each case
the ‘correct’ behaviour is defined by �-� 2246. The method will behave appro-
priately if the secure channel is already closed. The method will deal with hand-
shakes arising at any stage of the session.

��������������������� 193

C,8,8 &�$������'�
.�
�����

The '���� method will assume that there is data in the application send buffer;
however, in accordance with the philosophy of +:9KD#;	 suggested in
section 5.3, it does ��� assume that the application has waited for +:9KD#;	; in-
stead, it will just try the write and return the count of bytes written, possibly zero,
leaving it up to the application to deal with short writes. The method takes no
argments and may throw an #+	��������. The method will behave appropriately
if the secure channel is already closed. The method will deal with handshakes
arising at any stage of the session.

C,8,9 �
�������'�
.�
�����

The ����� method will implement the closure requirements of �-� 2246 in
terms of the ��� # � � � protocols and will also physically close the channel.

C,8,4 �����������'�
�.�
�����

Obviously the ���	�
�����
�� will require methods to process handshakes
(&		�9KD$: and &		�9E&KD$:) and delegated tasks (&		�9;$�/):

class SSLEngineManager
{
private boolean processHandshake();
protected boolean runDelegatedTasks();

}

The �������B����"� method will only be called internally so it will be private.
For convenience it will return a ������ indicating whether it needs to be called
again, typically via:

while (processHandshake())
;

The �������
���;�"� method will be provided as a protected method with a
simple implementation, allowing derived classes to over-ride it with more so-
phisticated implementations.

&.� ���������	��
���
���	�
�����
��
�����

In this section we will explore the implementation of the class described above.

194 ���
���������	������������

C,9,7 ���!���)��������!�����

The following assumptions and principles will be observed to simplify the imple-
mentation of this class.

�. All >)��>������ will be assumed to be always ready for a read (or put) opera-
tion, as they are on creation. When a write (or get) operation is required it
will be preceded by a flip operation and followed by a compact operation, to
return it to the initial state. In this way the state of all buffers will be known
and consistent.

�. Buffer underflows and overflows in the read and write methods will be re-
ported via the � !��� exceptions >�����E�������'	�������� and
>�����+ �����'	��������, rather than as zero return values. This will en-
courage application authors to plan for these conditions in advance.

�. The class will be implemented as a state machine driven by the current
���	�
���D�����. In particular it will make no assumptions about the se-
quence of wraps and unwraps required to peform a handshake, or about
when handshakes may occur. It will therefore cope correctly with multiple
handshakes arising at any time during the session and initiated from either
peer. The class will cope both with complete handshakes establishing a new
session and with handshakes which just change the session key.

The general sequence of operation of the state machine is as follows:

(a) Perform the unwrap or wrap indicated by the method (read or write);

(b) Check the ���	�
���D�����!����� arising from that operation, throwing an
exception if appropriate;

(c) Perform any indicated handshaking (&		�9KD$: or &		�9E&KD$:);

(d) Check the ���	�
���D�����!����� arising from the handshake operation;

(e) Repeat steps (c) and (d) if no error has arisen and handshaking is still in
progress.

C,9,2 ��!�������������

The following import statements are assumed throughout.

import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.net.*;
import java.security.*;

��������������������� 195

import java.util.*;
import javax.net.*;
import javax.net.ssl.*;

45�����
&.� ���	�
�����
�� imports

C,9,8 -��������.���!����������

The class declaration and member variables are as follows:

/**
* SSLEngineManager - manager for an SSLEngine.
* Copyright © Esmond Pitt, 2005. All rights reserved.
*/
class SSLEngineManager
{
private SocketChannel channel;
private SSLEngine engine;
private ByteBuffer appSendBuffer;
private ByteBuffer netSendBuffer;
private ByteBuffer appRecvBuffer;
private ByteBuffer netRecvBuffer;
private SSLEngineResult engineResult = null;

These declaration statements declare the socket channel, the SSL engine, the
four buffers, and the current engine result (maintained as an instance variable).

C,9,9 �����������.���!����������

The implementation of the constructor is as follows:

SSLEngineManager(SocketChannel channel, SSLEngine engine)
{
this.channel = channel;
this.engine = engine;
SSLSession session = engine.getSession();
int netBufferSize = session.getPacketBufferSize();
int appBufferSize = session.getApplicationBufferSize()
this.appSendBuffer = ByteBuffer.allocate(appBufferSize);
this.netSendBuffer = ByteBuffer.allocate(netBufferSize);
this.appRecvBuffer = ByteBuffer.allocate(appBufferSize);

196 ���
���������	������������

this.netRecvBuffer = ByteBuffer.allocate(netBufferSize);
}

}

45�����
&.� ���	�
�����
�� declarations and constructor

This implementation merely ensures that all the buffers are the minimum re-
quired sizes. An obvious improvement would be to allow the application to spec-
ify larger sizes, or arrays of >)��>������, via additional constructors. It might be
thought that a further obvious improvement would be to check that the channel
is connected, but this will be detected soon enough by the I/O methods anyway
so it is not really necessary.

The trivial implementations of the accessor methods for the application send
and receive buffers and the ���	�
��� are not shown.

C,9,4 ���%����'�
.���!����������

The implementation of the ��� method is as follows:

public int read() throws IOException, SSLException
{

if (engine.isInboundDone())
// Kind test to return another EOF:
// SocketChannels react badly
// if you try to read at EOF more than once.
return -1;

int pos = appRecvBuffer.position();

// Read from the channel
int count = channel.read(netRecvBuffer);

// Unwrap the data just read
netRecvBuffer.flip();
engineResult =
engine.unwrap(netRecvBuffer,appRecvBuffer);

netRecvBuffer.compact();

// Process the engineResult.Status
switch (engineResult.getStatus())
{
case BUFFER_UNDERFLOW:
return 0;// nothing was read, nothing was produced

case BUFFER_OVERFLOW:
// no room in appRecvBuffer: application must clear it
throw new BufferOverflowException();

��������������������� 197

case CLOSED:
channel.socket().shutdownInput();// no more input
// outbound close_notify will be sent by engine
break;

case OK:
break;

}

// process any handshaking now required
while (processHandshake())
;

if (count == -1)
{
engine.closeInbound();
// throws SSLException if close_notify not received.

}

if (engine.isInboundDone())
{
return -1;

}

// return count of application data read
count = appRecvBuffer.position()-pos;
return count;

}

45�����
&.� ���	�
�����
��!��� method

This implementation is straightforward, relying principally on correct imple-
mentation of the �������B����"� method to be shown in section 8.4.8.

The handling of closure requires comment. �-� 2246 §7.2.1 states:

/��'���!��)��)�����������������)����
������
���'���$()�����,� �)�
���������

����������������������������
,

/�'�!��)������>����
�������
���
���'���$()����������������������'��	�������
������'�
����������,���������>����
��'���'����'���!��)����!��
�	��'���
���'���$()������������
�	���
�������
�	���'�����������������
����)(�
����
�����)�!��
����	�����,������
������>����
������'���������������'�����������	��������'�����!��
�����
���'���$()�����
����������������'����
���
������'������������,

The ���	�
��� takes care of some of this. When the ���	�
���D�����!����� be-
comes ��+�	� after a read/unwrap sequence, the application ���� process the
resulting &		�9KD$: handshake status, and write the outbound closure mes-
sage which results from this wrap. The engine will not unwrap any more data
once the �����9�����) has been received, signalled by ��#���������� returning

198 ���
���������	������������

����. In the implementation above, this is signalled to the caller by returning -1 if
��#���������� is ����, �,�, if �����#������ has been called by any of these steps.
As a safety measure, the input side of the socket is shut down as well.

Note that the raw read count returned from the network read cannot be re-
turned to the application: instead, the count of application data actually produced
by unwrapping is returned. One of the many reasons for this is that there may be
no application data at all, just a lot of handshake data, which doesn’t produce any
application data when unwrapped. Another reason is that the byte-counts of raw
data and encrypted data are not the same, because of ��� # � � � protocol over-
heads such as padding to block boundaries, message authentication codes, dig-
ital signatures.

C,9,: &�$������'�
.���!����������

The '���� method is implemented for convenience with a separate ����� method
which can also be called by �������B����"�.

public int write() throws IOException, SSLException
{
int pos = appSendBuffer.position();

netSendBuffer.clear();
// Wrap the data to be written
appSendBuffer.flip();
engineResult = engine.wrap(appSendBuffer,netSendBuffer);
appSendBuffer.compact();

// Process the engineResult.Status
switch (engineResult.getStatus())
{
case BUFFER_UNDERFLOW:
throw new BufferUnderflowException();

case BUFFER_OVERFLOW:
// this cannot occur if there is a flush after every
// wrap, as there is here.
throw new BufferOverflowException();

case CLOSED:
throw new SSLException("SSLEngine is CLOSED”);

case OK:
break;

}

// Process handshakes
while (processHandshake())
;

��������������������� 199

// Flush any pending data to the network
flush();

// return count of application bytes written.
return pos-appSendBuffer.position();

}

45�����
&.� ���	�
�����
��!'���� method

Again this implementation is straightforward, relying on a correct implementa-
tion of �������B����"�.

Note that this method relies on ���	�
���!'�� to tell it whether the engine is
already closed and the write therefore illegal.

Again the raw byte count written to the network is of no interest; we are inter-
ested only in how much application data has been consumed by the '����
method.

A more sophisticated implementation of this method might not actually call
the ����� method at all, leaving this to the read and close methods, or leaving it up
to the application to call flush explicitly, or perhaps waiting for a
>ECC	D9+(DC�+K condition to arise before physically writing to the net-
work.3 This strategy would theoretically save a lot of small handshake packets
being written to the network during a handshake. However the present "�� 1.5
implementation of ���	�
���� requires ��!�) target buffers for the '�� and
��'�� methods, returning >ECC	D9+(DC�+K otherwise, so the actual effect
of such an improvement at present would be nil! Sun’s implementation can be
expected to become more intelligent in subsequent "�� versions, when this
strategy should be reconsidered.

The ����� method is as follows:

public int flush() throws IOException
{
netSendBuffer.flip();
int count = channel.write(netSendBuffer);
netSendBuffer.compact();
return count;

}

45�����
&. ���	�
�����
��!����� method

C,9,; �
�������'�
.���!����������

The implementation of the ����� method follows.

3. As in an early prototype of this ���	�
�����
��.

200 ���
���������	������������

/**
 * Close the session and the channel.
 * @exception IOException on any I/O error.
 * @exception SSLException on any SSL error.
 */

public void close() throws IOException, SSLException
{
try
{
// Flush any pending output data
flush();

if (!engine.isOutboundDone())
{
engine.closeOutbound();
while (processHandshake())
;

/*
 * RFC 2246 #7.2.1: if we are initiating this
 * close, we may send the close_notify without
 * waiting for an incoming close_notify.
 * If we weren't the initiator we would have already
 * received the inbound close_notify in read(),
 * and therefore already have done closeOutbound(),
 * so, we are initiating the close,
 * so we can skip the closeInbound().
 */

}
else
if (!engine.isInboundDone())
{
// throws SSLException if close_notify not received.
engine.closeInbound();
processHandshake();

}
}
finally
{
// Close the channel.
channel.close();

}
}

45�����
&.� ���	�
�����
��!����� method

��������������������� 201

Once again the implementation is straightforward and relies on a correct imple-
mentation of �������B����"�.

Note that we have taken advantage of the permission given by �-� 2246
quoted above not to wait for the incoming �����9�����) if we are initiating the
close. This strategy avoids having to do network reads in the close method, which
would otherwise raise a host of design issues such as timeouts, retries, applica-
tion ��������+�� modifications ���,, while still conforming to the �-� and thus
maintaining adequate security over the connection.

Note also that if ���	�
���!�����#������ is called, it will throw an exception if
the incoming �����9�����) has not been received.

Finally, note the �����) block to ensure that the channel is physically closed
regardless of any exceptions that may be thrown.

C,9,C *���������%�	�������'�
.���!����������

The implementation of the �������B����"� method follows. This method re-
turns ���� if it needs to be called again.

/**
 * Process handshake status.
 * @return true iff handshaking can continue.
 */

private boolean processHandshake() throws IOException
{
int count;

// process the handshake status
switch (engine.getHandshakeStatus())
{

case NEED_TASK:
runDelegatedTasks();
return false;// can’t continue during tasks

case NEED_UNWRAP:
// Don’t read if inbound is already closed
count = engine.isInboundDone()

? -1
: channel.read(netRecvBuffer);

netRecvBuffer.flip();
engineResult =
engine.unwrap(netRecvBuffer,appRecvBuffer);

netRecvBuffer.compact();
break;

202 ���
���������	������������

case NEED_WRAP:
appSendBuffer.flip();
engineResult =
engine.wrap(appSendBuffer,netSendBuffer);

appSendBuffer.compact();

if (engineResult.getStatus() ==
SSLEngineResult.Status.CLOSED)

{
// RFC 2246 #7.2.1 requires us to respond to an
// incoming close_notify with an outgoing
// close_notify. The engine takes care of this, so we
// are now trying to send a close_notify, which can
// only happen if we have just received a
// close_notify.

// Try to flush the close_notify.
try
{
count = flush();

}
catch (SocketException exc)
{
// tried but failed to send close_notify back:
// this can happen if the peer has sent its
// close_notify and then closed the socket,
// which is permitted by RFC 2246.

// exc.printStackTrace();
}

}
else
{
// flush without the try/catch,
// letting any exceptions propagate.
count = flush();

}
break;

case FINISHED:
case NOT_HANDSHAKING:
// handshaking can cease.
return false;

}

// Check the result of the preceding wrap or unwrap.
switch (engineResult.getStatus())
{
case BUFFER_UNDERFLOW:// fall through

��������������������� 203

case BUFFER_OVERFLOW:
// handshaking cannot continue.
return false;

case CLOSED:
if (engine.isOutboundDone())
{
channel.socket().shutdownOutput();// stop sending

}
return false;

case OK:
// handshaking can continue.
break;

}
return true;

}

45�����
&.! ���	�
�����
��!�������B����"� method

Again this is straightforward once the requirement is understood: a simple state
machine with a continuation indicator. The remarks about delayed writing
in section 8.4.6 apply equally to this method. The state machine is driven by the
B����"������ returned by the engine, not the one embedded in our
��
���D����� member. This is for simplicity; however one side-effect is that the
C#&#�B	� state is never seen by the state machine.4

To overcome this, the state machine could be driven by the handshake status
returned by ��
���D�����!
��B����"������-3 rather than the handshake sta-
tus returned by ��
���!
��B����"������-3, so as not to miss the C#&#�B	�
state, but the implementation of �������
���;�" (discussed in section 8.4.9)
must then update the ��
���D����� with the current handshake status after the
delegated tasks have been executed:

engineResult = new SSLEngineResult
(
engineResult.getStatus(),
engine.getHandshakeStatus(),
engineResult.bytesProduced(),
engineResult.bytesConsumed()

);

45�����
&.& Updating the ��
���D�����

4. C#&#�B	� is only ever returned as part of an ���	�
�������� by the ���	�
���!'��,��'��

methods, and is never stored for return by ���	�
���!
��B����"������, this being a simple
way to ensure it is only returned once.

204 ���
���������	������������

because running a delegated task is of course �����
�
 to alter the handshake sta-
tus, and the state machine must be able to see this change. Otherwise it will loop
forever in the &		�9;$�/ case.

C,9,D �+�,�
�#���%���������'�
.���!����������

There are at least three possible implementations of the �������
���;�"�
method, and an industrial design of this class would probably allow different im-
plementations to be plugged in either via a setter method or via over-riding in a
derived class.

Trivially all that is required is the following:

protected void runDelegatedTasks()
{

// run delegated tasks
Runnable task;
while ((task = engine.getDelegatedTask()) != null)
{
task.run();

}
}

45�����
&.) ���	�
�����
��!�������
���;�"� method—inline

This implementation has the severe disadvantage of causing the
���	�
�����
�� to block, which is entirely contrary to its design intent.

Another possible implementation would use a new thread per invocation:

private int threadNumber = 1;

protected void runDelegatedTasks()
{
Thread delegatedTaskThread
= new Thread

("SSLEngine.TaskThread-"+(threadNumber++))
{
public void run()
{
// run delegated tasks
Runnable task;
while ((task = engine.getDelegatedTask()) != null)
{
task.run();

}
}

��������������������� 205

};
delegatedTaskThread.start();

}

45�����
&.�* ���	�
�����
��!�������
���;�"� method—threaded

Further possible implementations of �������
���;�"��include:

(a) A single separate thread which continually processes a queue of�D�������
to be executed, which are placed on the queue by �������
���;�"�;

(b) An implementation which despatches tasks into a thread-pool.

Any implementation such as Example 8.10 which uses a separate thread or
threads needs to find a way to signal to the application when the
���	�
�����
���has tasks waiting to be executed, during which it cannot sen-
sibly be called for reading or writing, and afterwards to signal to the application
when it is now ready for these methods to be called. At the least, some interaction
is required with the ��
���D����� as described in section 8.4.8, and with the
&		�9;$�/ case in the �������B����"� method of section 8.4.8, to prevent
the ���	�
�����
�� from hard-looping while the tasks are running.

The solution of this problem is left as an exercise for the reader. There are
many techniques that could be applied: semaphores, wait/notify, callbacks, ���.

One attractive possibility may be to supply the ���������/�) for the channel to
the ���	�
�����
�� constructor (instead of the ���"��������, which can be
recovered from the ���������/�)), and have the ���	�
�����
�� manipulate
the key’s ��������+�� by setting them to zero while tasks are running and restor-
ing them when all tasks are complete.

&. '�	��
���
���	�
�����
��
�����

The ���	�
�����
�� class presented above has been extensively tested for use
by both clients and servers.

C,4,7 /�'��������

The following simple echo server shows how to use the ���	�
�����
�� class
described above in a secure server.

// SSLNIOEchoServer.

public class SSLNIOEchoServer
{
SSLContext context;
ServerSocketChannel ssc;
Selector sel;

206 ���
���������	������������

public SSLNIOEchoServer() throws Exception
{
// Create the SSLContext
this.context = SSLContext.getInstance("TLS");
// Initialize KMF ...
KeyManagerFactory kmf =
KeyManagerFactory.getInstance("SunX509");

KeyStore ks = KeyStore.getInstance("JKS");
char[]password =
System.getProperty("javax.net.ssl.keyStorePassword")
.toCharArray();

ks.load
(new FileInputStream
(System.getProperty
("javax.net.ssl.keyStore")),password);

kmf.init(ks,password);
context.init(kmf.getKeyManagers(),null,null);

At this point the SSL context has been established to a point where SSL engines
can be created.

// Start the server
this.ssc = ServerSocketChannel.open();
ssc.configureBlocking(false);
ssc.socket().bind
(new InetSocketAddress((InetAddress)null,0),50);

System.out.println("Server: listening at "+ssc);
this.sel = Selector.open();
ssc.register(sel,SelectionKey.OP_ACCEPT);

}

At this point the server socket channel has been established to a point where con-
nections can be accepted. Now follows the familiar selector loop.

public void run()
{
// Selector loop
int count;

while (sel.keys().size() > 0)
{
try
{
count = sel.select(30*1000);
if (count < 0)

��������������������� 207

{
System.out.println("Server: select timeout");
continue;

}
}
catch (IOException exc)
{
exc.printStackTrace();
sel.close();
ssc.close();
return;

}

System.out.println("Server: select count="+count);
Set selKeys = sel.selectedKeys();
Iterator it = selKeys.iterator();

// process ready keys
while (it.hasNext())
{
SelectionKey sk = (SelectionKey)it.next();
it.remove();
if (!sk.isValid())
continue;

try
{
if (sk.isAcceptable())
handleAccept(sk);

if (sk.isReadable())
handleRead(sk);

if (sk.isWritable())
handleWrite(sk);

}
catch (IOException exc)
{
exc.printStackTrace();
sk.channel().close();

}
}

}
} // run()

The implementation of the handler for +:9$��	:; follows:

208 ���
���������	������������

// Process OP_ACCEPT
void handleAccept(SelectionKey sk) throws IOException
{
ServerSocketChannel ssc =
(ServerSocketChannel)sk.channel();

SocketChannel sc = ssc.accept();
if (sc != null)
{
System.out.println("Server: accepted "+sc);
sc.configureBlocking(false);

// Create an SSL engine for this connection
SSLEngine engine =
context
.createSSLEngine
("localhost",sc.socket().getPort());

// This is the server end
engine.setUseClientMode(false);

// Create engine manager for the channel & engine
SSLEngineManager mgr =
new SSLEngineManager(sc,engine);

// Register for OP_READ with mgr as attachment
sc.register(sel,SelectionKey.OP_READ,mgr);

}
}

The handler for +:9D	$� follows.

// process OP_READ
void handleRead(SelectionKey sk) throws IOException
{
SSLEngineManager mgr =

(SSLEngineManager)sk.attachment();
SSLEngine engine = mgr.getEngine();
ByteBuffer request = mgr.getAppRecvBuffer();
System.out.println("Server: reading");
count = mgr.read();
System.out.println
("Server: read count="+count+" request="+request);

if (count < 0)
{
// client has closed
mgr.close();
// finished with this key
sk.cancel();

��������������������� 209

// finished with this test actually
ssc.close();

}

else
if (request.position() > 0)
{
// client request
System.out.println
("Server: read "
+new String(
request.array(),0,request.position()));

ByteBuffer reply = mgr.getAppSendBuffer();
request.flip();
reply.put(request);
request.compact();
handleWrite(sk);

}

The handler for +:9KD#;	 follows.

// Process OP_WRITE
void handleWrite(SelectionKey sk) throws IOException
{
SSLEngineManager mgr =
(SSLEngineManager)sk.attachment();

ByteBuffer reply = mgr.getAppSendBuffer();
System.out.println("Server: writing "+reply);
int count = 0;

while (reply.position() > 0)
{
reply.flip();
count = mgr.write();
reply.compact();
if (count == 0)
break;

}

if (reply.position() > 0)
// short write:
// Register for OP_WRITE and come back here when ready
sk.interestOps
(sk.interestOps() | SelectionKey.OP_WRITE);

}
else
{

210 ���
���������	������������

// Write succeeded, don’t need OP_WRITE any more
sk.interestOps
(sk.interestOps() & ~SelectionKey.OP_WRITE);

}
}

The main program follows.

// Main program
public static void main(String[] args) throws Exception
{

// System.setProperty("javax.net.debug","ssl");

// TODO adjust these values to suit your local system.
// These values are for the JDK SSL samples ‘testkeys’.
System.setProperty
("javax.net.ssl.keyStore","testkeys");

System.setProperty
("javax.net.ssl.keyStorePassword","passphrase");

new SSLNIOEchoServer().run();

System.out.println("Exiting.");
}

}

45�����
&.�� ���&#+	������ �� class

C,4,2 0����������

The following test echo client exercises the ���&#+	������ �� class shown
above. Note that it requests a new handshake before every read or write, and be-
fore closing, which will cause a short cipher-key handshake, and requests a new
session before the second write, which will cause a full handshake. This is a rea-
sonably severe test of the ���	�
�����
��G� state machine implementation.

class SSLEchoClient extends Thread
{
SSLSocket socket;

SSLEchoClient(SSLContext context, String host, int port)
throws IOException

{
this.socket = (SSLSocket)context
.getSocketFactory()
.createSocket(host, port);

}

��������������������� 211

public void run()
{
try
{
int count;
byte[]buffer = new byte[8192];

// send request
socket.getOutputStream().write("hello".getBytes());

// handshake before read
socket.startHandshake();

// read reply
count = socket.getInputStream().read(buffer);
System.out.println("client: (1) got "
+new String(buffer,0,count)+":"+count);

// get a new session & do a full handshake
socket.getSession().invalidate();
socket.startHandshake();

// send another request
socket.getOutputStream().write
("hello again after new handshake".getBytes());

// Do a partial handshake before reading the reply
socket.startHandshake();

// read reply
count = socket.getInputStream().read(buffer);
System.out.println("client: (2) got "
+new String(buffer,0,count)+":"+count);

}

catch (IOException exc)
{
exc.printStackTrace();

}

finally
{
try
{
socket.close();
System.out.println("client: socket closed");

}
catch (IOException exc)
{
// ignored

}

212 ���
���������	������������

}
}

}

45�����
&.�� ���	��������� class

&.� 45���	���

This is not really an exercise book, but the questions thrown up by the
���	�
�����
�� are so interesting that I couldn’t resist.

The ���	�
�����
�� class can be elaborated in many ways which are left as
exercises for the reader.

�. Add a ����B����"� method to the ���	�
�����
��.

�. Add ������'�#���� and ������'�+����� methods to the
���	�
�����
��, taking care to obey the requirements of �-� 2246
§7.2.1 quoted above.

�. The present implementation makes no attempt at thread-safety, on the as-
sumption that it will be only used by a single thread. Enhance it to be safe for
use by multiple threads.

�. Implement the suggestion in section 8.4.6 about delaying calls to the �����
method.

 . Redesign and reimplement the class so it will handle ��)� of >)��>������ as
read targets and write sources.

�. Elaborate some of the variations���������������
���;�"� method which
are described in section 8.4.9!

!. Rewrite the simple echo client above using ���"��������� and the the
���	�
�����
�� class described above.

&. Implement the suggestion in section 8.4.9 about using the ��������+�� of
the ���������/�) to defer scheduling of read and write calls while tasks are in
progress.

). Examine the design and implementation issues concerning whether the
manager class can be implemented as an ������"�������� that can be reg-
istered with a ��������� and selected for readability and writability just like a
plain ���"��������! Examine the question whether such a class should ex-
tend ���"�������� or $���������������������.5 Examine the question
of how to allow the application to choose despatching methods for delegated
tasks.

�*. When you have read Chapter 10, implement an ���	�
�����
��-like
class for ��
�����"���������. Initially, assume no packet losses.

��������������������� 213

When you have read section 9.15, add the reliable datagram protocol of
Example 9.8 to the manager.

5. Sun’s stated reason for not providing an ������"�������� family of classes reads ‘There were
a lot of very difficult questions about what a ������"�������� should be, including its class
hierarchy and how it should interoperate with ��������� and other types of ���"���������. Each
proposal brought up more quesitons than answers. It was noted than any new �� 	 abstraction
extended to work with � � � # � � � would requirethe same significant analysis and oculd result in
large and complex ��	 s.’� (" � �� Reference Guide.) Having implemented an integrated
������"�������� family of classes in an afternoon, I am unable to agree.

Part IV

��� —User
Datagram Protocol

217

��������� �������u d p

��	�
�������
	��������� ��� , the User Datagram Protocol, and its re-
alization in Java ��
�����"��� and ��
��:�"���. In this chapter we are
only concerned with point-to-point or ‘unicast’ ��� in blocking mode. ���
channel I/O and non-blocking mode are discussed in Chapter 10. Multicasting
(�����������"���) and broadcasting are discussed in Chapter 11.

).� $����	�

In this section we briefly review the basics of unicast ��� and how it is pro-
grammed in Java.

���
is specified in �-� 768 as amended.1

D,7,7 ��������������

As we saw in section 2.2.5, a socket is an abstraction representing a communica-
tions endpoint, and is associated with an 	� address and a port number on the
local host. There are significant differences between ��� sockets and ��� sock-
ets:

(a) ��� sockets do not implement reliable data streams. They implement un-
reliable datagrams, as discussed in section 9.1.2.

(b) ��� only has ‘active’ sockets, in contrast to ��� , which has ‘active’ and ‘pas-
sive’ sockets.

(c) ��� has no explicit ‘accept’ step as in ��� .2

1. Postel, J., �-� 768, �����-�������������, August 1980.

218 ���
���������	������������

(d) ��� sockets are not explicitly connected together or disconnected by net-
work operations.

(e) ��� sockets are represented in Java as objects of type ��
�����"��.

��� sockets and ��� sockets occupy different ‘name-spaces’: a ��� socket and
a ��� socket are always distinct, even if they have the same address and port
number. ��� sockets and ��� sockets cannot be interconnected.

D,7,2 -�����

A ‘datagram’ is a single transmission which may be delivered zero or more times.
Its sequencing with respect to other datagrams between the same two endpoints
is not guaranteed. In other words it may be delivered out of order, or not at all, or
multiple times.

A datagram is sent in a single 	� packet. Unlike ��� streams, datagrams are
subject to size constraints:

(a) The 	��� protocol limits them to 65507 bytes, and most implementations
limit them to 8�, , although in some implementations this can be raised by
increasing the socket send and receive buffer sizes, as described
in section 9.11.

(b) 	��� routers are entitled to fragment any 	� packet, including ��� seg-
ments and ��� datagrams. Unlike a ��� segment, however, a ��� data-
gram once fragmented is never reassembled, so it is effectively discarded.
Practical exploitations of 	��� ��� often restrict messages to 512 bytes—a
single 	� packet—to avoid fragmentation problems.3

(c) 	��� has ‘jumbograms’ at the 	� level; this allows ��� datagrams up to
 bytes: see �-� 2675. However, the �-� goes on to say that ‘Jumbo-

grams are relevant only to 	��� nodes that may be attached to links with a
link ��� greater than 65,575 octets, and need not be implemented or un-
derstood by 	��� nodes that do not support attachment to links with such

2. As discussed in section 9.3.7, to avoid certain Java and kernel overheads, a sender may
‘connect’ to the remote address and port prior to doing a number of sends. This is a ���� operation,
not a network operation: the remote peer is unaware of this operation and of any corresponding
disconnect operation.
3. Some more liberal maximum sizes you might consider are 5�6 1472, which matches the
nominal 1500-byte ��� for Ethernet, after allowing for 	 � and ��� headers, 5��) 1464, which
matches a very common ��� , or 5���6 1400, which allows room for virtual private network (���)
tunnelling overheads. If your application is only intended for a ��� , you can safely consider using
the larger ��� packet sizes. Otherwise you need to consider the !��
��� of 5�6 the number of 	 �
packets produced after fragmentation and 5��6 the packet-loss rate of the �� .

2
32

1–

�������u d p 219

large ��� s’. In other words, jumbograms can only be expected to be com-
municable among hosts which are all connected to such links.

If a datagram is delivered at all, it arrives intact, �,�, free of transmission errors,
dropouts, and internal sequencing errors among its bytes. However if a received
datagram is larger than the space available to Java, the excess data is silently ig-
nored.

D,7,8 "�����������udp

(a) As the protocol is connectionless, there is no network overhead for connec-
tion or disconnection. In contrast, we have seen in section 3.2.2 that ���
requires a three-way packet exchange to set up a connection, and a four-way
packet exchange to disconnect it.

(b) The architecture of ��� servers is much simpler than the architecture of
��� servers, as there is no connection socket to accept and close.

(c) Similarly, the architecture of ��� clients is somewhat simpler than that of
��� clients, there being no connection to create or terminate.

D,7,9 A�������������udp

(a) There is no support for reassembly of fragmented datagrams.

(b) The payload is very limited in practice. Datagram payloads above 512 bytes
are apt to be fragmented by routers and therefore effectively lost.

(c) There is no support for pacing transmissions according to prevailing net-
work conditions.

(d) There is no support for packet sequencing.

(e) There is no detection of packet loss and retransmission.

Some of these limitations are more apparent than real. The datagram model is
highly suited to applications where:

(a) Transactions are request-reply

(b) Payloads are small

(c) Servers are stateless

(d) Transactions are ‘idempotent’, �,�, can be repeated without affecting the
overall result of the computation.4

The datagram model is much closer than the ��� stream model to the underly-
ing reality of the network: packets being exchanged, resequenced, and lost. The

220 ���
���������	������������

datagram model is also much closer than the ��� stream model to the ‘overlying’
realities of many applications. In essence, datagrams naturally provide an ‘at
least zero’ delivery guarantee. This makes the client’s view of a sent request
pretty simple: either the transaction has been received and acknowledged, or it
has to be retransmitted.

Datagrams can be made to give an ‘exactly once’ delivery model with a very
small amount of extra programming at both ends:

(a) At the client, transaction requests are sequenced, sent via a datagram, and a
reply with the same sequence number is awaited. If the reply doesn’t arrive,
the request is simply repeated until a reply is received or a maximum retry
count or transaction timeout is exceeded.5 If the ‘wrong’ reply arrives it is
ignored.

(b) At the server, if a request arrives in duplicate, the original reply is simply
retransmitted without re-executing the semantics of the request; if an out-
of-order request is received, indicating a missing prior request, it is ignored.

Clearly this is pretty easy to program, and rather obliterates the apparent limita-
tions of unreliable delivery and sequencing.

By contrast, ��� can be made to give an ‘at most once’ model when very care-
fully programmed as in Java ��	 , and can only be made to give an ‘exactly once’
model by essentially adopting the above datagram approach layered over ��� ’s
streams: this may seem perverse, and is certainly both more complicated to pro-
gram, having to deal with connections, and far less efficient on the network.

Variations on the protocol outined above are possible: the client might want to do some-
thing more intelligent with a reply sequence number which is too high; ditto the server
with an out-of-sequence request. Both conditions indicate an application protocol error.
This quickly becomes an exercise in protocol design, a non-trivial discipline in its own
right.

In summary, ��� supports unreliable, unconnected, limited-size datagram
communications in a peer-to-peer architecture. Each peer creates a datagram
socket. To receive data, a ��� socket must be bound to a port. To send data, a
datagram packet is formed and sent via a datagram socket to a remote 	� address
and port number.

4. Some arithmetic examples may make this clear. Adding zero, multiplying by one, or raising to
the zeroth power are all idempotent: more interestingly, so is the modulus operation. Crediting a
sum to a bank account is ��� idempotent, but any operation can be made idempotent by
permanently associating it with a unique sequence number and arranging not to apply repeated
transactions.
5. The intervals between retries should be made larger than would be required by any network-
sensitive transmission pacing. See also section 3.12, section 9.15, and Example 9.7.

�������u d p 221

Although ��� is a peer-to-peer protocol, in many practical applications we
can still distinguish between requesting peers as ‘clients’ which send a request
and wait for a response, and responding peers as ‘servers’ which wait for a re-
quest and send a response.

D,7,4 ��!�������������

The following Java import statements are assumed in the examples throughout
this chapter.

import java.io.*;
import java.net.*;
import java.util.*;

).� :	����
���
�������
���
��	����

In Java, a ��� socket is represented by an object of type
� !���!��
�����"��; a ��� datagram is represented by an object of type
� !���!��
��:�"��.

D,2,7 ���!���udp ��������

The simplest possible ��� server is shown in Example 9.1.

public class UDPServer implements Runnable
{
DatagramSocket socket;

public UDPServer(int port) throws IOException
{
this.socket = new DatagramSocket(port);

}

public void run()
{
for (;;)
{
try
{
byte[] buffer = new byte[8192];
DatagramPacket packet= new DatagramPacket
(buffer, buffer.length);

socket.receive(packet);
new ConnectionHandler(socket, packet).run();

}

222 ���
���������	������������

catch (IOException e)
{
// …

}
} // for (;;)

} // run()
} // class

45�����
).� Simple ��� server

The connection-handling class for this and subsequent servers is shown in
Example 9.2.

class ConnectionHandler implements Runnable
{
DatagramSocketsocket;
DatagramPacketpacket;

ConnectionHandler(DatagramSocket socket,
DatagramPacket packet)

{
this.socket = socket;
this.packet = packet;

}

public void run()
{
handlePacket(socket, packet);

}

public void handlePacket(DatagramSocket socket,
DatagramPacket packet)

{
try
{
byte[] buffer = packet.getData();
int offset = packet.getOffset();
int length = packet.getLength();
// conversation not shown …
// sets reply into buffer/offset/length
packet.setData(buffer, offset, length);
// write reply to the output
socket.send(packet);

}

�������u d p 223

catch (IOException e) { /* ... */ }
} // handlePacket()

} // class

45�����
).� ��� server connection handler

The single-threaded design of Example 9.1 is not usually adequate, as it proc-
esses clients sequentially, not concurrently—a new client blocks while the previ-
ous client is being serviced. To handle clients concurrently, the server must use a
different thread per accepted connection. The simplest form of such a ���
server, using the same connection-handling class, is sketched in Example 9.3.

public class ConcurrentUDPServer extends UDPServer
{
public ConcurrentUDPServer(int port) throws IOException
{
super(port);

}

public void run()
{
for (;;)
{
try
{
byte[] buffer= new byte[8192];
DatagramPacket packet = new DatagramPacket
(buffer, buffer.length);

socket.receive(packet);
new Thread
(new ConnectionHandler(socket, packet)).start();

}

catch (IOException e)
{
// …

}
} / for (;;)

} // run()
} // class

45�����
).� Simple ��� server—multithreaded

A connection-handling class which simply echoes its input to its output—very
useful for testing—is shown in Example 9.4.

224 ���
���������	������������

class EchoConnectionHandler implements Runnable
{
DatagramSocket socket;
DatagramPacket packet;

ConnectionHandler
(DatagramSocket socket, DatagramPacket packet)

{
this.socket = socket;
this.packet = packet;

}

public void run()
{
handlePacket(socket, packet);

}

public void handlePacket(DatagramSocket socket,
DatagramPacket packet)

{
try
{
byte[] buffer = packet.getData();
int offset = packet.getOffset();
int length = packet.getLength();
// The reply is the same as the request,
// which is already in buffer/offset/length
packet.setData(buffer, offset, length);
// write reply to the output
socket.send(packet);

}

catch (IOException e)
{
// …

}
} // handlePacket()

} // class

45�����
).� ��� server connection handler—echo service

D,2,2 ���!���udp ��������

The client’s ��
�����"�� is usually bound to a system-chosen port. A simple
���
client for the preceding ��� server is shown in Example 9.5.

�������u d p 225

public class UDPClient implements Runnable
{
DatagramSocket socket; // socket for communications
InetAddress address; // remote host
int port; // remote port

public UDPClient(InetAddress address, int port)
throws IOException

{
this.socket = new DatagramSocket();// ephemeral port
this.address = address;
this.port = port;

}

/**
 * Send the data in {buffer, offset, length}
 * and overwrite it with the reply.
 * @return the actual reply length.
 * @exception IOException on any error
 */
public int sendReceive(byte[] buffer, int offset,

int length)
throws IOException

{
try
{
// Create packet
DatagramPacketpacket = new DatagramPacket
(buffer, offset, length, address, port);

socket.send(packet);
socket.receive(packet);
return packet.getLength();

}
catch (IOException e)
{
// …

}
} // sendReceive()

} // class

45�����
). Simple ��� client

D,2,8 0'��,���#��-�����������

As we saw in section 9.1.2, a ��� datagram is a single transmission unit, and it
is convenient to represent it in Java as a single object. This object is a
��
��:�"��. ��� isn’t a streaming protocol, so the streams-based program-

226 ���
���������	������������

ming techniques used for ��� do not apply. Unlike ��� sockets, which support
the familiar #���������� and +�����������, ��� sockets in Java support in-
put and output via methods which send and receive entire ��
��:�"���.

D,2,9 ,���#��-�������������������

A ��
��:�"�� is constructed by one of the methods:

class DatagramPacket
{
DatagramPacket(byte[] data, int length);
DatagramPacket(byte[] data, int length,
InetAddress address, int port);

DatagramPacket(byte[] data, int offset, int length);
DatagramPacket(byte[] data, int offset, int length,

InetAddress address, int port);
DatagramPacket(byte[] data, int length,

SocketAddress socketAddress);
DatagramPacket(byte[] data, int offset, int length,

SocketAddress socketAddress);
}

where �����' and ������ are non-negative, and the following invariant applies:6

0 ≤ ���
�� + ������ ≤ ��!���
�� <�=
).�>

Note that, unlike the ��� protocol, it is possible to both send and receive zero-
length datagrams in ��� . This could be useful in an application protocol, �,�, for
‘I’m alive’ messages or pings.

The
�, ������, �����',

����, and !��� attributes can all be set separately after
construction by corresponding ��� methods, and they can all be interrogated with
corresponding
�� methods.

These attributes are all described separately below.

D,2,4 ,���#��-�������
�

The data in a ��
��:�"�� is specified as a byte array, an offset, and a length.
These can all be set on construction, and can subsequently be set and interro-
gated by the methods:

6. This invariant always applies in Java when dealing with byte arrays, offsets, and lengths, and it
is enforced by any constructors or methods which specify them: an #���
�$�
�����	�������� is
thrown if the invariant is violated.

�������u d p 227

class DatagramPacket
{
byte[] getData();
void setData(byte[] data);
void setData(byte[] data, int length);
void setData(byte[] data, int offset, int length);

int getLength();
void setLength(int length);

int getOffset();
void setOffset(int offset);

}

The default values for
�, ������, and �����' are null, zero, and zero respectively.
When setting any of these attributes, Equation 9.1 is enforced.

When ���
��� a datagram, it is up to the application to format its data into the
byte array. One way to do so is via either a ��+���������� or an
+�����+����������, coupled to a >)��$��)+����������:

DatagramPacket packet = new DatagramPacket();
ByteArrayOutputStream

baos = new ByteArrayOutputStream();
DataOutputStream dos = new DataOutputStream(baos);
dos.writeInt(…); // or as per application protocol
dos.flush();
packet.setData(baos.toByteArray(), baos.size());

When ��������� a datagram, Java places the received data into the byte array of the
��
��:�"�� starting at the current value of the offset attribute and ending
one before the current length attribute of the ��
��:�"��. The application
must have pre-allocated the byte array, and ensured that it is adequate for the data
expected, as well as setting appropriate values for offset and length: the byte ar-
ray, offset, and length must always satisfy Equation 9.1. Usually applications will
set ������ to zero and �����' to the length of the byte array prior to receiving a
��
��:�"��.

Java adjusts the �����' attribute of the ��
��:�"�� to the length of the re-
ceived data if it is less than the original length; however, as we saw in
section 9.1.2, excess data is silently truncated, in which case �����' is undis-
turbed: in other words, no indication (such as an excessive length) is received that
the data was truncated.

This means that the length attribute of a datagram which is re-used for multi-
ple receive operations must be reset before the second and subsequence receives;
otherwise it continually shrinks to the size of the smallest datagram received so
far. It also means that the application can’t distinguish between a datagram
which was exactly the maximum length and a datagram which was too big and

228 ���
���������	������������

got truncated. The usual technique for handling this problem is to allocate space
for the largest expected datagram plus one byte. If a datagram of this extra length
is received, it was unexpectedly large, �,�, at least one byte too long.

It is up to the application to format the byte array into its own data. One way to
do so is via either a ��#��������� or an +�����#���������, coupled to a
>)��$��)#���������:

DatagramPacket packet;
// initialization & receive not shown …
ByteArrayInputStream bais = new ByteArrayInputStream
(packet.getData(), packet.getOffset(),
packet.getLength());

DataInputStream dis = new DataInputStream(bais);
int i = dis.readInt();// or as per application protocol

It should be clear that this technique is the reverse of the >)��$��)+����������
technique given earlier in this section.

D,2,: ,���#��-�������

������
�!���

A ��
��:�"�� is associated with an 	� address and port: these represent the
remote ��� socket where an inbound datagram came from, or an outbound da-
tagram is being sent to. They can be set on construction or via the methods:

class DatagramPacket
{
SocketAddress getSocketAddress();
void setSocketAddress(SocketAddress address);
InetAddress getAddress();
void setAddress(InetAddress address);
int getPort();
void setPort(int port);

}

remembering that a "�� 1.4 ���"��$������ represents an {#���$������������}
pair.

When a datagram is �������
, Java sets its {

����(�!���} to the remote source of
the datagram, so that you know where it came from.

When ���
��� a datagram, its {

����(�!���} must be already set to the target
where the datagram is to be sent. If the datagram initiates the conversation, the
application must set {

����(�!���} itself. However, to reply to a datagram just
received, instead of constructing a new ��
��:�"�� and setting its {

����(
!���}, it is simpler to re-use the received datagram for the reply: place the reply
data into the datagram with the ��
��:�"��!����� method, and leave the

�������u d p 229

{

����(!���} undisturbed. This technique saves on created objects, and avoids
error-prone copying of {

����(�!���} information between request and reply.

).� (�������
������
	�	�	��	3��	��

D,8,7 ������������

Objects of type ��
�����"���are created with one of these constructors:

class DatagramSocket
{
DatagramSocket() throws IOException;
DatagramSocket(int port) throws IOException;
DatagramSocket(int port, InetAddress localAddress)

throws IOException;
DatagramSocket(SocketAddress localSocketAddress)

throws IOException;
}

In most of these cases the socket is constructed already ‘bound’, meaning that it
is already associated with a local 	� address and port. A bound socket can be used
immediately for sending and receiving. However, if the constructor which takes
a ���"��$������ is called with a null, the socket is constructed ‘unbound’, �,�, not
yet associated with a local 	� address or port. An unbound socket can be used
immediately for sending, but before receiving it must first be ‘bound’ with the
��
�����"��!���� method described in section 9.3.5.

First we look at the parameters for constructing bound sockets; we then look at
the method for binding unbound sockets.

D,8,2 ����

��� receivers usually specify the local port on which they receive, by supplying a
non-zero port number to the constructor or the ���� method. If the port number
is omitted or zero, an �!'�����—system-allocated—port number is used,
whose value can be obtained by calling the method:

class DatagramSocket
{
int getLocalPort();

}

Ephemeral ports are generally used by ��� clients, unless they need to specify a
particular port to satisfy local networking constraints such as firewall policies.
Ephemeral ports are ��� generally used by ��� servers, as otherwise some exter-

230 ���
���������	������������

nal means is required of communicating the actual port number to clients; other-
wise they won’t know how to send to the receiver: typically this function is as-
sumed by a naming service such as an ���� directory service. In Sun ��� it was
assumed by the ��� !����!!�� service.

D,8,8 A����

����

The �����

���� of a datagram socket is the 	� address at which it receives. By
default, ��� sockets receive at all local 	� addresses. They can be made to re-
ceive at a ������ local 	� address, by supplying either a non-null #���$������, or an
#������"��$������ with a non-null #���$������, to a ��
�����"�� construc-
tor.

If the #���$������ is omitted or null (the ‘wildcard’ address), the socket is
bound to all local addresses, meaning that it receives from any address.

Specifying a local 	� address only makes sense if the local host is multi-
homed, �,�, has more than one 	� address, usually because it has more than one
physical network interface. In such a circumstance, a ��� receiver may only
want to make itself available via one of these 	� addresses rather than all of them.
See the discussion of multi-homing in section 9.12 for more detail.

The local 	� address to which a datagram socket is bound is returned by the
methods:

class DatagramSocket
{
InetAddress getInetAddress();
SocketAddress getLocalSocketAddress();

}

These methods return ���� if the socket is not yet bound.

D,8,9 #��������'�������

����

Before binding the datagram socket as described in section 9.3.4, you may wish
to set the ‘reuse local address’ option. This really means reusing the local port.

The reuse-address methods were added in "�� 1.4:

class DatagramSocket
{
void setReuseAddress(boolean reuse)

throws SocketException;
boolean getReuseAddress() throws SocketException;

}

You ���� use this setting if you want to receive at the same port on multiple 	�
addresses by binding multiple ��
�����"��� to the same port number and

�������u d p 231

different local 	� addresses, either within the same " �� or in multiple " ��s on
the same host.

Changing this setting after a datagram socket is bound, or constructed other than with
a null ���"��$������, has no effect. Note that these methods set and get a boolean state,
not some sort of address as their names may suggest.

D,8,4 "��
��!������

A ��
�����"�� constructed with a null ���"��$������ in the constructor in-
troduced in "�� 1.4 must be bound before datagrams can be received (although
it need not be bound for datagrams to be sent). Binding of datagram sockets is
supported by the "�� 1.4 methods:

class DatagramSocket
{
void bind(SocketAddress localSocketAddress)
throws IOException;

boolean isBound();
}

where �������"��$������ is usually an #������"��$������ constructed with a
port number as described in section 9.3.2 and an #���$������ as described in
section 9.3.3. The socket is bound to either an ephemeral or a specified local port,
at either a specified local 	� address or all of them, according to the value of the
�������"��$������ parameter as shown in Table 9.1.

��,��
).� ��� ���� parameters

 ��%���!!���� $���!!����
��� &��!���

���� - - Ephemeral port, all local 	�
addresses

#������"��$������ null zero Ephemeral port, all local 	�
addresses

#������"��$������ null non-zero Specified port, all local 	 �
addresses

#������"��$������ non-null zero Ephemeral port, specified local 	 �
address

#������"��$������ non-null non-zero Specified port and local 	 � address

232 ���
���������	������������

As discussed in section 9.3.2, a server would normally specify a specific port
number: a client might or might not, depending mostly on whether it needs to
use a fixed port number for firewall-traversal purposes. The ���� method ���� be
called before performing channel datagram input, discussed in section 10.2. For
multi-homed hosts see also the discussion in section 9.12.

A ��
�����"�� cannot be re-bound. The ��>���� method returns true if
the socket is already bound.

D,8,: �����������������B��

Before using a datagram socket, its send and receive buffer sizes should be ad-
justed as described in section 9.11.

D,8,; ���������!������

A ��
�����"�� can be connected to a remote ��� socket. Unlike the ���
connect operation, a ��� ‘connect’ is only a local operation: it has no effect on
the network, and therefore no effect on the remote end; it merely conditions the
local end so that data can only be received from or sent to the specified address. If
the {

����(!���} attributes of an �������� ��
��:�"�� disagree with the
settings specified to the ������� method, the datagram is silently discarded; if
those of an �������� ��
��:�"�� disagree with the settings specified to the
������� method, ��
�����"��!���� throws an #���
�$�
�����	��������.

Connecting of datagram sockets is supported by the methods:

class DatagramSocket
{
void connect(InetAddress address, int port);
void connect(SocketAddress socketAddress)

throws SocketException;
boolean isConnected();

}

where either:

(a) ������ and ���� specify a remote ��� socket {

����(!���} as described
in section 9.2.6, or

(b) ���"��$������ is (usually) an #������"��$������ constructed with a remote
��� socket {

����(!���} as described in section 9.2.6.

As no network protocol is involved, there is no guarantee that the remote ���
port exists, even though the ������� method may have completed successfully.
Therefore a subsequent send or receive operation on a connected
��
�����"�� may throw a :���E��������	��������. Worse, the send or re-

�������u d p 233

ceive may simply fail silently without an exception being thrown. The actual be-
haviour which occurs depends on the platform and "�� version.

Connecting a datagram socket saves some Java overheads: it allows the con-
nection permission to the target to be checked once at connect time, rather than
on each transmission to or reception from the target. If the required
���"��:��������� for the ‘connect’ action is not granted, a �������)	�������� is
thrown: this is a run-time error and so is not checked by the compiler.

In the Berkeley Sockets API, connecting a datagram socket also eliminates some kernel
overheads. Prior to "�� 1.4, Java didn’t call the underlying �������() API, it just mim-
icked its actions at the Java level, so the kernel overheads weren’t eliminated, and
:���E��������	�������� wasn’t thrown by I/O operations on a connected
��
�����"��.

The ����������� method tells whether the ���� socket has been connected: it
tells you nothing about the other end, including whether or not it even exists.

A ��
�����"�� cannot be closed and then connected or re-connected, but it
can be disconnected as described in section 9.5 and then re-connected.

If you don’t have "�� 1.4 and its ��
�����"��!����������� method, you
can use the methods:

class DatagramSocket
{
InetAddress getInetAddress();
int getPort();

}

for the same purpose. These methods return the remote address or port to which
the socket is connected, or ���� or -1 (as appropriate) if the socket is not currently
connected.

).� (�������
� #$

Datagram I/O is performed with the methods:

class DatagramSocket
{
void send(DatagramPacket packet) throws IOException:
void receive(DatagramPacket packet) throws IOException:

}

234 ���
���������	������������

D,9,7 -��������!��

Once you have formatted the output data into a byte array and constructed a
��
��:�"�� from it as shown in section 9.2.5, and set the target address in
the datagram as discussed in section 9.2.6, sending the datagram to a destina-
tion is simply a matter of calling the ��
�����"��!���� method as shown be-
low:

// initializations not shown
InetAddress address;
DatagramPacket packet;
int port;
byte[] buffer;// see section 9.2.5
DatagramSocket socket = new DatagramSocket();
packet.setData(buffer, length);

// pre-JDK 1.4 …
packet.setAddress(address);
packet.setPort(port);
socket.send(packet);

From "�� 1.4, the ���$������ and ���:��� calls above can be replaced with a sin-
gle call to ������"��$������:

// From JDK 1.4 …
packet.setSocketAddress
(new InetSocketAddress(address, port));

The ��
�����"��!���� method is not synchronized: this is one reason why
the concurrent ��� server shown in Example 9.3 doesn’t need a second
��
�����"�� to send a reply for an incoming packet. Any internal sequential-
ization needed is taken care of by the underlying ��� implementation.

Exception handling for datagram sockets is discussed in section 9.8.

D,9,2 -�������!��

Receiving datagrams is even simpler than sending, as shown below:

int port;// initialization not shown
DatagramSocketsocket = new DatagramSocket(port);
// declare array at required length+1
byte[] buffer = new byte[8192+1];
DatagramPacketpacket = new DatagramPacket
(buffer, buffer.length);

socket.receive(packet);

�������u d p 235

If no datagram is pending, the ����� � method blocks until a datagram is re-
ceived. At this point, the ��"��!
���� method yields the data received,
��"��!
��+����� gives its offset, and ��"��!
�����
�� gives its total length, so we
can proceed as follows:

ByteArrayInputStream bais = new ByteArrayInputStream
(packet.getData(), packet.getOffset(),
packet.getLength());

// etc as in section 9.2.5

In the case above we didn’t specify an offset when creating the packet, so we
might use the simpler form:

new ByteArrayInputStream
(packet.getData(), packet.getLength());

// …

although really defensive programming should not assume a zero offset like this.
If we want to reply to this datagram, we saw in section 9.2.6 that a received

datagram already contains the sender’s address and port, so all we have to do is
set the reply data and call ��
�����"��!���� as described in section 9.4.1.

The ��
�����"��!����� � method is not synchronized.

The ����� � method of the default datagram socket implementation class (discussed
in section 9.6) is synchronized. Concurrent receives on the same datagram socket
from multiple threads are sequentialized by Java.

). ����	���	��

There is no explicit disconnection protocol in ��� , so when a conversation with
a particular peer has ended no specific action is required. Connected datagram
sockets can be disconnected and re-used in either unconnected or connected
mode if required. Datagram sockets must be closed after use.

D,4,7 -���������

If a datagram socket has been connected, it can be disconnected with the method:

class DatagramSocket
{
void disconnect();

}

This method does nothing if the socket wasn’t connected.

236 ���
���������	������������

If a datagram socket is to be used in the connected mode, it would normally be
connected at the beginning of a conversation and disconnected at the end of the
conversation.

D,4,2 �����

When you have finished with a ��
�����"�� you must close it:

class DatagramSocket
{
void close() throws IOException;
boolean isClosed();

}

The �������� method tells whether the ���� socket has been closed. It doesn’t
tell you anything about the connection, for the very good reason that in ���
there �� no connection in the network sense.

After being closed, the socket is no longer usable for any purpose.

).� :�����
-�����	��

As we saw in section 3.8.1, � !��� socket factories are used by Java to provide
itself with socket implementations.

The � !���!��
�����"�� class is really a facade. It defines the Java sockets
��	 ; but delegates all its actions to socket-implementation objects which do all
the real work. Datagram socket implementations extend the abstract
� !���!��
�����"��#��� class:

class DatagramSocketImpl
{
// …

}

The factory which supplies objects of type ��
�����"��#��� implements the
� !���!��
�����"��#���C����) interface:

interface DatagramSocketImplFactory
{
DatagramSocketImpl createDatagramSocketImpl();

}

A default socket factory is always installed, which delivers implementation ob-
jects of the package-protected � !���!:�����
�����"��#��� class. This

�������u d p 237

class has native methods which interface with the local C-language sockets ��	 ,
�,�, the Berkeley Sockets ��	 or 	����� .

The socket factory can be set:

class DatagramSocket
{
static void setDatagramSocketImplFactory

(DatagramSocketImplFactory factory);
}

The ������"��C����) method can only be called once in the lifetime of a " �� . It
requires the D������:��������� ‘setFactory’ to be granted, otherwise a
�������)	�������� is thrown.

Applications have little or no use for this facility.

).! ����	��	���

If a Java 2 security manager is installed, various � !���!���"��:���������� are
required for datagram socket operations. These are shown in Table 9.2.

).& 45����	���

The significant Java exceptions that can arise during datagram socket operations
are shown in Table 9.3.

��,��
).� Permissions in ���

���	� #������

accept Required in the ����� � and ������� methods of ��
�����"��. The
target '��� and !��� specify the remote ��� socket.

connect Required in the ���� and ������� methods of ��
�����"��, and when
obtaining #���$������ objects. The target '��� and !��� and !��� specify the
remote ��� socket.

listen Required when constructing a ��
�����"��, and in its ���� method.
The target '��� and !��� and !��� specify the ���� ��� socket. Most loosely
specified as “localhost:1024-”.

resolve This permission is implied by the ‘connect’ action, so there is little need to
specify it explicitly. The target '��� and !��� and !��� specify the remote
��� socket.

238 ���
���������	������������

��,��
).� Exceptions in ���

����
�	� �������� ���	�

� !���!
>���	��������

��
�����"��
constructors and
���� method

The requested local address or
port cannot be assigned, �,�, it
is already in use and the
‘reuse address’ option is not
set.

� !��
!
#���
�$�
�����	��������

Several
constructors and
methods of
��
��:�"��;
several methods of
��
�����"��
and
#������"��$������

Equation 9.1 is violated, or
arguments are null or out of
range. This is a
D������	��������, and
therefore not shown in
method signatures or checked
by the compiler.

� !���!
#���
�>���"��
����	��������

���� and ����� �
methods of
��
�����"��

The socket has an associated
channel which is in non-
blocking mode; from "�� 1.4.

� !��!
#����������#+	��������

����� � method of
��
�����"��

A timeout has occured; prior
to "�� 1.4.

� !��!
#+	��������

���� method of
��
�����"��

A general I/O error has
occurred.

Exceptions derived from this
exception include
#���
�>���"��
����	��������,
#����������#+	��������,
���"��	�������� and
E�"��'�B���	��������.

� !���!
:���E��������	��������

���� and ����� �
methods of
��
�����"��

The socket is connected to a
currently unreachable
destination; from "�� 1.4.

� !��
!
�������)	��������

several methods of
��
�����"��

A required ���"��:���������
is not granted as shown in
Table 9.2. This is a
D������	��������, , and
therefore not shown in
method signatures or checked
by the compiler.

�������u d p 239

).) :�����
���	���

Several socket options are available which control advanced features of ���
sockets. In Java, datagram socket options can be set and interrogated via methods
in � !���!��
�����"��.

Datagram socket options are presented below more or less in order of their
relative importance. The later in the chapter an option appears, the less you need
to be concerned with it.

).�* �	�����

As we have seen in section 3.12 (and will see again in section 13.2.5–
section 13.2.6), it cannot be assumed that an application can wait forever for a
remote service, nor that the service will always be rendered in a timely manner,
nor that the service or the intervening network infrastructure will only fail in de-
tectable ways. Any network program which reads with infinite timeout is sooner
or later going to experience an infinite delay.

� !���!
���"��	��������

many
��
�����"��
methods,
especially ����� �

An underlying ��� error has
occured, or the socket is
closed by another thread other
than via the ����� method of
��
��������.

Many exceptions are derived
from this exception, including
>���	��������.

� !���!
���"��;������	��������

����� � method of
��
�����"��

A timeout has occured; from
"�� 1.4.

Extends
#����������#+	�������� for
backwards compatibility with
pre-"�� 1.4 programs.

� !���!
E�"��'�B���	��������

Factory methods
of #���$������, or
implicit use of
these when using
�����
 hostnames

The 	 � address of the named
host cannot be determined.

��,��
).� Exceptions in ��� (continued)

����
�	� �������� ���	�

240 ���
���������	������������

For all these reasons, prudent network programming almost always uses a fi-
nite receive timeout at clients. The receive timeout is set and interrogated with
the methods:

class DatagramSocket
{
void setSoTimeout(int timeout) throws SocketException;
int getSoTimeout() throws SocketException;

}

where ������� is specified in milliseconds, and must be either positive, indicat-
ing a finite timeout, or zero, indicating an infinite timeout. By default, the read
timeout is infinite.

If the timeout has been set to a finite value prior to a blocking receive operation
on the socket, the receive will block for up to the timeout period if data is not
available, and will then throw an #����������#+	�������� or, as shown in
Table 9.3, the "�� 1.4 ���"��;������	�������� which is derived from it. If the
timeout is infinite, the receive will block forever if data is not available and no
error occurs.

The remarks in section 3.12 about timeout durations for ��� apply equally
well to ��� .

��� servers which are waiting for a client request need not use timeouts, as
unlike ��� servers they don’t have connections to expire. A ��� server timeout
can be used to poll a number of ��
�����"��s in a single thread, although the
�������� class described in section 5.3.1 provides a better way to do this.

).�� 8�--���

��� allocates a send buffer and a receive buffer to each socket. These buffers
exist in the address space of the kernel or the ��� protocol stack (if different),
not in the " �� or process address space. The default size of these buffers is deter-
mined by the underlying platform’s implementation of ��� , not by Java. In cur-
rent ��� implementations, the send and receive buffer sizes are at least 8Kb,
and often 32�, or more by default, and can be set as high as 256�, or more in
some implementations. The target system’s characteristics must be investigated
before deciding whether, and how, to modify socket buffer sizes.

The send and receive buffer sizes are set and interrogated by the methods:

class DatagramSocket
{

void setReceiveBufferSize(int size)
throws SocketException;

int getReceiveBufferSize() throws SocketException;

�������u d p 241

int getSendBufferSize() throws SocketException;
void setSendBufferSize(int size)

throws SocketException;
}

where ��?� is specified in bytes. Values supplied to these methods act only as a
hint to the underlying platform, and may be adjusted in either direction to fit into
the allowable range, or rounded up or down to appropriate boundaries. Values
returned by these methods may not match the values you sent, and may not
match the actual values being used by the underlying platform.

You can perform these operations at any time before the socket is closed.

D,77,7 G�	������'���
��
���������������������@

The size of the ������� buffer is generally used by the underlying ��� transport to
determine the maximum size of the datagram that the socket can receive. There-
fore, at a minimum, the receive buffer should be at least as big as the largest
expected datagram plus one byte as suggested in section 9.2.5. Increasing the
receive buffer beyond this size may allow the implementation to buffer multiple
packets when they arrive faster than they are being received by the
��
�����"��!����� � method. In other words the receive buffer should be a
multiple of the largest datagram expected to be received plus one byte, where the
multiplier determines the length of the input queue, say 40 or 50.

The size of the ���
 buffer is generally used by the underlying ��� transport
to determine the maximum datagram size that can be sent on the socket. There-
fore, at a minimum, the send buffer should be at least as big as the largest data-
gram to be sent. Increasing the send buffer further may allow the implementa-
tion to queue multiple datagrams for transmission when the send rate is high. In
other words the send buffer should be a multiple of the size of the largest data-
gram expected to be sent, where the multiplier determines the length of the out-
put queue, and must be at least one.

Unlike ��� , there may be little point in allowing a ��� application to get significantly
ahead of the network when sending datagrams. Because datagram delivery is not guar-
anteed, the application protocol generally requires the last datagram to be acknowl-
edged before the next datagram can be sent.

).�� 7���	%���	��

We saw in section 3.14 that a multi-homed host is a host which has more than
one 	� address, typically because it has more than one physical network inter-
face. The "�� 1.4 &��'��"#������� class can return all the network interfaces for
a host and all the 	� addresses supported by a given network interface.

242 ���
���������	������������

Multi-homing has non-trivial consequences for ��� servers, and trivial con-
sequences for clients.

D,72,7 �����$'�����<udp ��������

A ��� server normally listens at all available local 	� addresses, and such a
server need not usually be concerned with the fact that it may be running in a
multi-homed host. There are a few situations in which a ��� server may need to
be aware of multi-homing:

(a) If the server is intended to service only one subnet, it should bind itself to
the appropriate local 	� address. This in turn may require use of the Data-
gramSocket.���D����$������ method discussed in section 9.3.4.

(b) Clients often match up 	� addresses in request and reply packets to associ-
ate replies with corresponding requests. This particularly occurs in clients
which deal asynchronously with multiple services. In such cases, the source
	� address in the reply packet from the server needs to match the 	� address
which the client sent the datagram to. In the Berkely Sockets �� 	 this can be
accomplished by sending the reply from a socket bound to the target 	� ad-
dress of the received datagram. Java doesn’t provide access to the target 	�
address of an inbound datagram,7 so a server which deals with such clients
needs to set up one datagram socket bound to each interface; should receive
requests from each socket; and should send each reply via the same socket
that the corresponding request was received from.

(c) In directory services when registering service descriptors, the server must
advertise itself via an 	� address which all clients can access. Typically the
client doesn’t have access to all the 	� addresses of the server, but can only
access it on one of them. The best way to assure that advertised service ad-
dresses are most usable is to advertise the ‘most public’ 	� address or host-
name in each case.

D,72,2 �����$'�����<udp ��������

A ��� client normally pays no attention to its local 	� addresses, as we have seen
in section 9.3.5. If for some reason it really cares about which network interface it
uses to send, it should specify the local 	� address when constructed or bound, as
discussed in section 9.3.3.

7. Presumably because some platforms don’t support the #:9D	�(��;$��D option in the C-
language socket ����56 API.

�������u d p 243

).�� ���--	�
�����

The ‘traffic class’ associated with a datagram socket can be set and interrogated
with the methods:

class DatagramSocket
{
void setTrafficClass(int tc) throws SocketException;
int getTrafficClass() throws SocketException;

}

	� traffic classes are discussed in section 3.19.

).�� ����	��
	�
���
��������

A revision to the constructor of the simple ��� server of Example 9.1 with the
improvements we have seen above is shown in Example 9.6.

public class UDPServer implements Runnable
{
public static final int MAX_DATAGRAM_BYTES = 512;
public static final int MAX_SEND_QUEUE = 4;
public static final int MAX_RECV_QUEUE = 40;
DatagramSocket socket;
DatagramPacket packet = null;

public UDPServer(int port) throws IOException
{
this.socket = new DatagramSocket(port);
// outgoing queue of about 4 datagrams
socket.setSendBufferSize
(MAX_DATAGRAM_BYTES*MAX_SEND_QUEUE);

// incoming queue of about 40 datagrams, with pad byte
socket.setReceiveBufferSize
((MAX_DATAGRAM_BYTES+1)*MAX_RECV_QUEUE);

}

// run method is as before
} // class

45�����
).� Simple ��� server—revised

A revision of the ��� client of Example 9.5, with the improvements we have
seen above, and exhibiting rudimentary error-recovery, is shown in Example 9.7.

244 ���
���������	������������

public class UDPClient
{
public static final int MAX_DATAGRAM_BYTES = 512;
public static final int MAX_SEND_QUEUE = 4;
public static final int MAX_RECV_QUEUE = 4;
public static final int MAX_RETRIES = 4;
public static final int TIMEOUT = 2*1000;
DatagramSocket socket;
DatagramPacket packet;

public UDPClient(InetAddress address, int port)
throws IOException

{
this.socket = new DatagramSocket();// system-chosen port
this.packet = new DatagramPacket
(null, 0, address, port);

socket.setSendBufferSize
(MAX_DATAGRAM_BYTES*MAX_SEND_QUEUE);

socket.setReceiveBufferSize
(MAX_DATAGRAM_BYTES*MAX_RECV_QUEUE);

}

// Retry as necessary at increasing intervals:
// throw InterruptedIOException if no reply

public int sendReceive(byte[] buffer, int offset,
int length)
throws IOException

{
packet.setData(buffer, offset, length);
IOException exception = null;
int timeout = TIMEOUT;
for (int i = 0; i < MAX_RETRIES; i++)
{
socket.send(packet);
try
{
socket.setSoTimeout(timeout);
socket.receive(packet);
return packet.getLength();// return actual length

}

// catch InterruptedIOException rather than
// SocketTimeoutException, so as to support all JDKs

catch (InterruptedIOException iioexc)
{
exception = iioexc;

�������u d p 245

timeout *= 2; // exponential backoff
}

}
throw exception;

} // sendReceive()
} // class

45�����
).! Complete ��� client

).� D��	�,��
���

To send datagrams over lossy network segments with significant latency (�,�, the
Internet, especially when xDSL network segments are present), we need some-
thing stronger than the examples of section 9.14.

As we saw in section 9.1.4, ��� does not guarantee the arrival or the correct
sequence of datagrams. We have also seen that a simple combination of a se-
quence-numbering scheme with timeouts and retransmissions can be used to
overcome this limitation:

(a) All datagrams are sequence-numbered

(b) The sender uses acknowledgement timeouts and retransmits requests
whose acknowledgements have not arrived in time.

Most existing ��� applications such as the Domain Name Service exhibit both
these features.

D,74,7 ��>���������������

Sequence-numbering is simple. The client places a unique sequence number in
each request datagram; the server must use the same sequence number in its
reply. This lets the client associate an acknowledgment with a request, and allows
the server to have some policy about out-of-sequence datagrams.

D,74,2
!��������������
��������������

Timeout and retransmission is not so simple. The naïve approach is to use a fixed
application-determined timeout, but this takes no account of the nature of the
actual network, nor of its current state. The network might be anything between
a 1�bps Ethernet LAN or a 9.6�bps dial-up modem; it might be lightly or heavily
loaded at any particular time, which can change rapidly; it may be misbehaving
badly due to some transient hardware condition such as a failing router.

It would be better to ‘learn’ how well the network is performing rather than
sticking doggedly to some preconception. We should adapt the behaviour of our
application to the current network load in two critical ways. First, we should

246 ���
���������	������������

transmit datagrams at a rate appropriate to the current network conditions, so
that we get the best possible performance out of a lightly loaded network while
not flooding a heavily loaded network with data it can’t handle. Second, when we
are re-transmitting dropped packets, we must aim at reducing the congestion on
the network rather than making it worse.

D,74,8 ��!�����������������

These techniques already exist in the ��� protocol, as a result of many years of
design and experimentation, and can be applied to any network application. Spe-
cifically, the ��� protocol:

(a) Maintains a statistical estimate of the current round-trip time for a data-
gram to get from sender to receive and back again: this aims at sending
packets into the network as fast as they can be received, but no faster, �,�,
avoiding ‘filling’ the network

(b) Uses an ‘exponential backoff’ when computing retry timeouts, so that time-
outs increase exponentially when repeated failures occur: this tends to
empty the network of packets, increasing the likelihood that the next re-
transmission will get through.

D,74,9 ��!���������������udp ������

These techniques can easily be adapted to ��� datagrams in Java. The Java code
following implements a D��������
�����"�� class along the lines indicated,
which:

(a) Automatically prepends a unique sequence number to all outgoing trans-
missions and retrieves it from incoming transmissions, invisibly to the
caller

(b) Introduces methods to get the incoming sequence number and set the out-
going sequence number, for use by servers when replying

(c) Introduces a ����D���� � method for use by clients, which takes two argu-
ments: an outgoing datagram and an incoming reply datagram, and which
transmits the outgoing datagram and waits for the reply, adaptively timing-
out and re-transmitting as necessary until a maximum retry count is
reached, in which case it throws an #����������#+	�������� as shown in
Table 9.3.

The round-trip timer is now part of the standard for ���
 <�-� 1122), and the ideas
underlying it first appeared in Van Jacobson, ����������� ���
�����
��������, Com-
puter Communications Review, vol. 18. no. 4, pp. 314–329, Proceedings of the ACM
SIGCOMM '88 Workshop, August, 1988. The D��������
�����"�� class presented
here in Java ultimately derives from a discussion and C code in W. Richard Stevens,

�������u d p 247

���%����	��������������, 2nd edition, Vol I, Prentice Hall, 1998, §20.5, which ex-
plains how and why the round-trip timer statistics are maintained.

/*
* ReliableDatagramSocket.java.
* Copyright © Esmond Pitt, 1997, 2005. All rights reserved.
* Permission to use is granted provided this copyright
* and permission notice is preserved.
*/

import java.io.*;
import java.net.*;
import java.text.*;
import java.util.*;

// All times are expressed in seconds.

// ReliabilityConstants interface, just defines constants.

interface ReliabilityConstants
{

// Timeout minima/maxima
public static final int MIN_RETRANSMIT_TIMEOUT = 1;
public static final int MAX_RETRANSMIT_TIMEOUT = 64;
// Maximum retransmissions per datagram, suggest 3 or 4.
public static final int MAX_RETRANSMISSIONS = 4;

}

The D����;���;���� class manages current and smoothed round-trip timers
and the related timeouts:

// RoundTripTimer class.

class RoundTripTimer implements ReliabilityConstants
{
float roundTripTime = 0.0f;// most recent RTT
float smoothedTripTime = 0.0f;// smoothed RTT
float deviation = 0.75f; // smoothed mean deviation
short retransmissions = 0;// retransmit count: 0, 1, 2, …
// current retransmit timeout
float currentTimeout =
minmax(calculateRetransmitTimeout());

/** @return the re-transmission timeout. */

private int calculateRetransmitTimeout()
{
return (int)(smoothedTripTime+4.0*deviation);

}

248 ���
���������	������������

/** @return the bounded retransmission timeout. */

private float minmax(float rto)
{
return Math.min
(Math.max(rto, MIN_RETRANSMIT_TIMEOUT),
MAX_RETRANSMIT_TIMEOUT);

}

/** Called before each new packet is transmitted. */

void newPacket()
{
retransmissions = 0;

}

/**
 * @return the timeout for the packet.
 */

floatcurrentTimeout()
{
return currentTimeout;

}

/**
 * Called straight after a successful receive.
 * Calculates the round-trip time, then updates the
 * smoothed round-trip time and the variance (deviation).
 * @param ms time in ms since starting the transmission.
 */

void stoppedAt(long ms)
{
// Calculate the round-trip time for this packet.
roundTripTime = ms/1000;
// Update our estimators of round-trip time
// and its mean deviation.
double delta = roundTripTime − smoothedTripTime;
smoothedTripTime += delta/8.0;
deviation += (Math.abs(delta)-deviation)/4.0;
// Recalculate the current timeout.
currentTimeout = minmax(calculateRetransmitTimeout());

}

�������u d p 249

/**
 * Called after a timeout has occurred.
 * @return true if it's time to give up,
 * false if we can retransmit.
 */

boolean isTimeout()
{
currentTimeout *= 2; // next retransmit timeout
retransmissions++;
return retransmissions > MAX_RETRANSMISSIONS;

}
} // RoundTripTimer class

The D��������
�����"�� class exports a ����D���� � method like the ones
we have already seen.

// ReliableDatagramSocket class

public class ReliableDatagramSocket
extends DatagramSocket
implements ReliabilityConstants

{
RoundTripTimer roundTripTimer = new RoundTripTimer();
private boolean reinit = false;
private long sendSequenceNo = 0; // send sequence #
private long recvSequenceNo = 0; // recv sequence #

/* anonymous initialization for all constructors */
{
init();

}

/**
 * Construct a ReliableDatagramSocket
 * @param port Local port: reeive on any interface/address
 * @exception SocketException can't create the socket
 */

public ReliableDatagramSocket(int port)
throws SocketException

{
super(port);

}

250 ���
���������	������������

/**
 * Construct a ReliableDatagramSocket
 * @param port Local port
 * @param localAddr local interface address to use
 * @exception SocketException can't create the socket
 */

public ReliableDatagramSocket
(int port, InetAddress localAddr) throws SocketException

{
super(port, localAddr);

}

/**
 * Construct a ReliableDatagramSocket, JDK >= 1.4.
 * @param localAddr local socket address to use
 * @exception SocketException can't create the socket
 */

public ReliableDatagramSocket(SocketAddress localAddr)
throws SocketException

{
super(localAddr);

}

/**
 * Overrides DatagramSocket.connect():
 * Does the connect, then (re-)initializes
 * the statistics for the connection.
 * @param dest Destination address
 * @param port Destination port
 */

public void connect(InetAddress dest, int port)
{
super.connect(dest, port);
init();

}

�������u d p 251

/**
 * Overrides JDK 1.4 DatagramSocket.connect().
 * Does the connect, then (re-)initializes
 * the statistics for the connection.
 * @param dest Destination address
 */

public void connect(SocketAddress dest)
{
super.connect(dest);
init();

}

/** Initialize */

private void init()
{
this.roundTripTimer = new RoundTripTimer();

}

/**
 * Send and receive reliably,
 * retrying adaptively with exponential backoff
 * until the response is received or timeout occurs.
 * @param sendPacket outgoing request datagram
 * @param recvPacket incoming reply datagram
 * @exception IOException on any error
 * @exception InterruptedIOException on timeout
 */

public synchronized void sendReceive
(DatagramPacket sendPacket, DatagramPacket recvPacket)
throws IOException, InterruptedIOException

{

// re-initialize after timeout
if (reinit)
{
init();
reinit = false;

}

roundTripTimer.newPacket();
long start = System.currentTimeMillis();
long sequenceNumber = getSendSequenceNo();

// Loop until final timeout or some unexpected exception
for (;;)
{
// keep using the same sequenceNumber while retrying

252 ���
���������	������������

setSendSequenceNo(sequenceNumber);
send(sendPacket);// may throw
int timeout =
(int)(roundTripTimer.currentTimeout()*1000.0+0.5);

long soTimeoutStart = System.currentTimeMillis();

try
{
for (;;)
{
// Adjust socket timeout for time already elapsed
int soTimeout = timeout−(int)
(System.currentTimeMillis()−soTimeoutStart);

setSoTimeout(soTimeout);
receive(recvPacket);
long recvSequenceNumber = getRecvSequenceNo();
if (recvSequenceNumber == sequenceNumber)
{
// Got the correct reply:
// stop timer, calculate new RTT values
long ms = System.currentTimeMillis()-start;
roundTripTimer.stoppedAt(ms);
return;

}
}

}
catch (InterruptedIOException exc)
{
// timeout: retry?
if (roundTripTimer.isTimeout())
{
reinit = true;
// rethrow InterruptedIOException to caller
throw exc;

}
// else continue

}
// may throw other SocketException or IOException

} // end re-transmit loop
} // sendReceive()

�������u d p 253

/**
 * @return the last received sequence number;
 * used by servers to obtain the reply sequenceNumber.
 */

public long getRecvSequenceNo()
{
return recvSequenceNo;

}

/** @return the last sent sequence number */

private long getSendSequenceNo()
{
return sendSequenceNo;

}

/**
 * Set the next send sequence number.
 * Used by servers to set the reply
 * sequenceNumber from the received packet:
 *

. * socket.setSendSequenceNo(socket.getRecvSequenceNo());
 *
 * @param sendSequenceNo Next sequence number to send.
 */

public void setSendSequenceNo(long sendSequenceNo)
{
this.sendSequenceNo = sendSequenceNo;

}

/**
 * override for DatagramSocket.receive:
 * handles the sequence number.
 * @param packet DatagramPacket
 * @exception IOException I/O error
 */

public void receive(DatagramPacket packet)
throws IOException

{
super.receive(packet);

// read sequence number and remove it from the packet
ByteArrayInputStream bais = new ByteArrayInputStream
(packet.getData(), packet.getOffset(),
packet.getLength());

DataInputStream dis = new DataInputStream(bais);
recvSequenceNo = dis.readLong();

254 ���
���������	������������

byte[] buffer = new byte[dis.available()];
dis.read(buffer);
packet.setData(buffer,0,buffer.length);

}

/**
 * override for DatagramSocket.send:
 * handles the sequence number.
 * @param packet DatagramPacket
 * @exception IOException I/O error
 */

public void send(DatagramPacket packet)
throws IOException

{
ByteArrayOutputStreambaos = new ByteArrayOutputStream();
DataOutputStreamdos = new DataOutputStream(baos);

// Write the sequence number, then the user data.
dos.writeLong(sendSequenceNo++);
dos.write
(packet.getData(), packet.getOffset(),
packet.getLength());

dos.flush();

// Construct a new packet with this new data and send it.
byte[]data = baos.toByteArray();
packet = new DatagramPacket
(data, baos.size(), packet.getAddress(),
packet.getPort());

super.send(packet);
}

} // end of ReliableDatagramSocket class

D,74,4 �����

Strictly speaking, D��������
�����"�� should maintain a D����;���;����
object for each destination, rather than one per socket.8 The implementation
above is reasonable as long as each client only communicates with one server, or
even with one server per D��������
�����"�� (�,�, if the socket is logically

8. Although even this implementation is an improvement over Stevens’, which just maintains
one static set of statistics for all sockets. If the application communicates with multiple servers,
each send/receive operation starts out with possibly irrelevant historical statistics, as Stevens
agreed. — W.R. Stevens, private communication with the author, 1999.

�������u d p 255

connected), and not wildly unreasonable if it communicates with multiple serv-
ers along similar network paths.

A server for this protocol must obey two simple protocol rules:

(a) Each reply packet must have the same sequence number as the correspond-
ing request packet: this is achieved by calling

socket.setSendSequenceNo(socket.getRecvSequenceNo());

before each transmission.

(b) If the underlying service is not idempotent, the server must keep track of
sequence numbers and replies !��� ������, and retransmit the same reply
without re-excuting the service if it receives a duplicate request.

The latter raises some questions of protocol design and application policy. The
following are ‘left as exercises for the reader’:

(a) Is it safe to discard a reply once a higher-numbered request has been re-
ceived from a client?

The answer to this is probably ‘yes’, unless the client has strange behaviour.
The client shouldn’t use a new sequence number until it has an acknowl-
edgement of the old sequence number. This can occur in the above imple-
mentation of D��������
�����"�� if a packet is sent after a previous
send has timed out, but perhaps you shouldn’t be doing this, or if you do
perhaps the control of outgoing sequence numbers needs to be revised.

(b) If so, what if anything should be done if a duplicate request is received
whose reply has already been discarded?

This should only arise because the network has redelivered the request. If
so, the duplicate request can be completely ignored. The client shouldn’t
have re-sent it: having used a new sequence number, it has no business to
reuse an old sequence number. This can only occur in the implementation
of D��������
�����"�� above after 264 iterations, which is unlikely to be
reached in practice.

(c) What should be done if a higher sequence number than expected is re-
ceived?

In a protocol with negative acknowledgements you would send a ���� for
the next expected sequence number; otherwise the answer to this is proba-
bly ‘debug the client’s strange behaviour’. This can’t occur in the implemen-
tation of D��������
�����"�� above.

Protocols with negative acknowledgements are also known as ‘���� -based’ pro-
tocols. These are further discussed in section 9.15.6.

Code for a reliable ��� echo server observing this protocol is shown in
Example 9.8.

256 ���
���������	������������

public class ReliableEchoServer implements Runnable
{
ReliableDatagramSocket

socket;
byte[] buffer = new byte[1024];
DatagramPacket recvPacket =
new DatagramPacket(buffer, buffer.length);

ReliableEchoServer(int port) throws IOException
{
this.socket = new ReliableDatagramSocket(port);

}

public void run()
{
for (;;)
{
try
{
// Restore the receive length to the maximum
recvPacket.setLength(buffer.length);
socket.receive(recvPacket);
// Reply must have same seqno as request
long seqno = socket.getRecvSequenceNo();
socket.setSendSequenceNo(seqno);
// Echo the request back as the response
socket.send(recvPacket);

}
catch (IOException exc)
{
exc.printStackTrace();

}
} // for (;;)

} // run()
} // class

45�����
).& Reliable ��� server

D,74,: ���� $���
�!��������

The reliable datagram socket above implements an E ��� -based’ protocol, in
which a positive acknowledgment (���) indicates one or more packet(s) re-
ceived. The opposite of this is called a negative acknowledgement-based or
‘���� -based’ protocol, in which a ������� acknowledgement (����) indicates
packet(s) ��� received. Some protocols, including ��� , have both ��� and
���� features.

�������u d p 257

Pure ���� -based protocols are sometimes used when streaming data down a
highly reliable network path. Under these circumstances, if the data is well paced
and the packet-loss rate is low, these protocols can be considerably more efficient
than ��� -based protocols, as a ���� only has to be issued when a packet is lost,
which may be quite rare.

To implement such a protocol over ��� , sequence numbering is again re-
quired. Sent datagrams and ����s both contain sequence numbers, where the
sequence number of a ���� indicates a datagram not received. The sender
transmits sequenced datagrams at a controlled rate, while asynchronously look-
ing for ���� replies. Each ���� causes a retransmission of the datagram with
the sequence number advised in the ���� , implying some sort of cache or back-
ing-up mechanism in the sender. The receiver receives datagrams and processes
them until it receives one out of sequence:

(a) If the sequence number is lower than expected, it is a duplicate which has
already been received and can be ignored.

(b) If it is higher than expected, the datagrams between the last received se-
quence number and the current one have not been received, indicating a
‘hole’ in the received data: this is advised to the sender by issuing ���� s for
the missing numbers (or a single ���� containing all the missing num-
bers if the protocol allows it).

Several classic issues arise in the design of ���� -based protocols:9

(a) How does the receiver know when and whether message � was sent?

(b) If message � was lost or corrupt and a ���� is sent, what happens if the
���� is itself lost?

(c) If the data receiver does not ��������� its ���� (in response to still not re-
ceiving message �), how can the data sender know to retransmit?

Timeouts are often used to resolve these issues. An end-of-sequence indication
in the application protocol is also required to resolve (a).

D,74,; /��������
��

���� -based protocols can be used in conjunction with ‘erasure codes’, which
add redundancy to the data stream in order to reduce the need for ����s and
retransmissions. Indeed, erasure codes of sufficient strength can be used �����

of ���� -based protocols.

Erasure codes are a special case of ‘forward error correction’ (-��> , a tech-
nique often used in hardware to provide correction of arbitrary errors or omis-

9. Vernon Schryver, ��.�

�������������)����u d p (news:comp.protocols.tcp-ip, 3 March 2002.

258 ���
���������	������������

sions. The 8-to-14 Reed-Solomon encoding used on an audio �� is an -�� tech-
nique. -�� in full generality deals with arbitrary bit errors in unknown places,
whereas, as their name implies, erasure codes only deal with missing data in
known places (‘erasures’). Erasure codes are computationally much simpler than
full -�� , and their function is well matched to the general ��� problem that
datagrams arrive either intact or not at all.

One well-known type of erasure code is used by ��	� 10 hard disk technology.
Consider four blocks of data which we will label , ", �, and - (�,�, four se-
quenced datagrams of 512 bytes each). We can construct a fifth ‘checksum’ block
/ by a sequence of exclusive-OR operations on … -:

E = A ^ B ^ C ^ D <�=
).�>

where /�, the ��' byte of /(is formed by exclusive-ORing together � … -�, the ��'

bytes of N -. We choose the exclusive-OR operator because it has the interest-
ing and useful mathematical property that its inverse function is itself, �,�,:

A = B ^ C ⇒ B = A ^ C <�=
).�>

(and similarly C = A ̂ B). Applying this to Equation 9.2 , we then have:

A = B ^ C ^ D ^ E <�=
).�>

and similarly for ", �, and -. In other words, any of the five blocks is the exclu-
sive-OR of the other four. Therefore, of these five blocks of data, we only need any
four: we can take advantage of Equation 9.3 to reconstruct the missing one. In
other words if we transmit these five blocks, the receiver can tolerate the loss of
any one of them. If the network fails to deliver /, there is no real loss as it is just
the checksum block, but if it fails to deliver say ", it can be reconstructed from the
other four.

Being able to reconstruct a missing block avoids having to send a ���� for it
to request the sender to retransmit it. Obviously this is achieved at the expense of
the extra data transmission. Note that there is nothing magic about using four
blocks to compute the checksum block. We can use any number � from zero
upwards, depending on the packet-loss rate we are anticipating. At � = 0 we have
normal non-redundant transmission; at � = 1 we effectively transmit each data-
gram twice, corresponding to disk mirroring, with an overhead of 100%; at � = 2
we have overhead of 50%; at � = 4 we have overhead of 25%; and so on. The
choice of � corresponds to an expected packet-loss rate of (assuming we
����� want to send a ����). The overhead for any value of � > 0 as a percentage

10. ��	� : redundant arrays of inexpensive disks.

1 N⁄

�������u d p 259

is given by . Higher values of � require more memory at sender and re-
ceiver. In general we would choose small values of � such that:

N < 1 ⁄ packet-loss rate <�=
). >

where the packet-loss rate is expressed as a fraction (lost packets divided by total
packets). Single-digit values of � are generally practical.

Obviously, this particular erasure code cannot deal with the loss of more than
one packet of a sequence of � (�,�, more than one of , ", �, -, and / for � = 5),
any more than ��	� can cope with the loss of more than one disk. In this case a
more elaborate erasure code would be required, or a ���� protocol could take
over responsibility for repairing the data stream.

100 N⁄

261

��������	� �������udp

��	�
 �������
�	 ������� the use of "�� 1.4 scalable I/O with ��� data-
grams.

�*.� ��������
-��
���

Scalable I/O over ��� is performed with the ��
�������� class we encoun-
tered in passing in section 4.2.1.

73,7,7 ��!�������������

The following Java import statements are assumed in the examples throughout
this chapter.

import java.io.*;
import java.net.*;
import java.nio.*;
import java.nio.channels.*;
import java.util.*;

73,7,2 ���������,���#��-�	����

The ��
�������� class exports much the same opening and closing meth-
ods we have already encountered for ���"��������:

class DatagramChannel
{
static DatagramChannel open() throws IOException

262 ���
���������	������������

boolean isOpen();
void close() throws IOException;

}

Opening a ��
�������� returns a channel which is in blocking mode and
ready for use. Its socket can be bound if required as discussed in section 9.3.5.
The channel must be closed when it is finished with. ����. see the remarks
about closing registered channels in section 5.2.5, which apply equally to
��
��������.

73,7,8 ���������!������

A ��
�������� can be connected and disconnected directly, as well as via its
��
�����"��:

class DatagramChannel
{
DatagramChannel connect(SocketAddress target)

throws IOException;
DatagramChannel disconnect() throws IOException;
boolean isConnected();

}

These methods operate identically to the corresponding methods of
��
�����"��. Unlike the connection methods of ���"��������, the �������
method is ��� a non-blocking version of the ��� socket connection operation:
��
��������!������� and ��
�����"��!������� are semantically identi-
cal.

The ����������� method tells whether the �����socket has been connected.
As we saw in section 9.3.7, connecting a datagram socket is a purely local oper-

ation with no network implications, �,�, with nothing to block on.

�*.� ��
��������
 �#$

��
�������� exports the read and write operations we have already seen
in section 4.2.2, as required by the interfaces which it implements:

class DatagramChannel
{
int read(ByteBuffer) throws IOException;
int read(ByteBuffer[] buffers) throws IOException;
int read(ByteBuffer[] buffers, int offset, int length)

throws IOException;

�������u d p 263

int write(ByteBuffer) throws IOException;
int write(ByteBuffer[] buffers)throws IOException;
int write(ByteBuffer[] buffers, int offset, int length)

throws IOException;
}

Now, this ��	 is completely different from the ��
��:�"��-oriented ��	 ex-
ported by the ��
�����"�� class described in section 9.4.1 and section 9.4.2.
Specifically, there is nowhere to specify the destination address of an outgoing
datagram, or to receive the source address of an incoming one. For this reason,
the ��� and '���� methods are subject to an important semantic restriction in
��
��������: they can only be used if the associated socket is ��������
 as
defined in section 9.3.7. In this state the source or target address of a received or
sent datagram can only be the target address to which the socket is connected, so
the read/write ��	 above is adequate.

To handle ����������
 datagram sockets, ��
�������� provides two new
methods:

class DatagramChannel
{
SocketAddress receive(ByteBuffer buffer)

throws IOException;
int send
(ByteBuffer buffer, SocketAddress target)
throws IOException;

}

These correspond to the ��
�����"��!����� � and ��
�����"��!����
methods respectively. The ����� parameter of ��
��������!���� is the re-
mote target for the transmission. The return value of ��
��������!����� �
is a ���"��$������, as seen in section 2.2, representing the remote source of the
transmission.

73,2,7 "��������udp ����

As we saw in section 10.1, a ��
�������� is created in blocking mode. In
this mode:

(a) A read operation blocks until an incoming datagram has been received into
the socket receive buffer if none is already present.

(b) A write operation blocks until space is available to queue the outgoing data-
gram in the socket send-buffer, i.e. until enough datagrams previously
queued have been transmitted to the network: this delay, if it occurs, is usu-
ally very short, as datagrams are transmitted at the maximum rate.

264 ���
���������	������������

73,2,2 ���$���������udp ����

A ��
�������� can be put into non-blocking mode:

class DatagramChannel
{
SelectableChannel configureBlocking(boolean block)
throws IOException;

boolean isBlocking();
}

In ���$�������� mode, the '���� and ���� methods may return zero, indicating
that the socket send-buffer was full and no transfer could be performed; simi-
larly, the ��� and ����� � methods may return zero or null respectively, indicat-
ing that no datagram was available.

A simple non-blocking ��� I/O sequence is illustrated in Example 10.1.

As the comments say, the program should be doing useful work or sleeping in-
stead of spinning mindlessly while the I/O transfers return zero.

�*.� 7���	���5	��

73,8,7 ���������������!�����������ud p

Selectable I/O operations in ��� all apply to ��
�������� objects. The
meanings of their ‘ready’ states are shown in Table 10.1.

ByteBuffer buffer = ByteBuffer.allocate(8192);
DatagramChannel channel= DatagramChannel.open();
channel.configureBlocking(false);
SocketAddress address
= new InetSocketAddress(“localhost”, 7);

buffer.put(…);
buffer.flip();
while (channel.send(buffer, address) == 0)
; // do something useful …

buffer.clear();
while ((address = channel.receive(buffer)) == null)
; // do something useful …

45�����
�*.� Simple non-blocking ��� client I/O

�������u d p 265

73,8,2 �����!��%�
����

A ��
�������� can be registered with a selector and the ��������!������
method called to await readability or writability of the channel, as discussed
in section 10.3.1:

DatagramChannelchannel = DatagramChannel.open();
// bind to port 1100
channel.bind(new InetSocketAddress(1100));
Selector selector = Selector.open();
// register for OP_READ
channel.register(selector, SelectionKey.OP_READ);
// Select
selector.select();

73,8,8 /%�!��

A simple multiplexing ��� echo server is shown in Example 10.2.

public class NIOUDPEchoServer implements Runnable
{
static final int TIMEOUT = 5000;// 5s
private ByteBuffer buffer =
ByteBuffer.allocate(8192);

private DatagramChannelchannel;
private List<Datagram> outputQueue =
new LinkedList<Datagram>();

// Create new NIOUDPEchoServer
public NIOUDPEchoServer(int port) throws IOException
{
this.channel = DatagramChannel.open();

��,��
�*.� Selectable I/O operations in ���

'
����	� ���	�

+:9D	$� Data is present in the socket receive-buffer or an exception is pending.

+:9KD#;	 Space exists in the socket send-buffer or an exception is pending. In
��� , +:9KD#;	 is almost always ready except for the moments dur-
ing which space is unavailable in the socket send-buffer. It is best only
to register for +:9KD#;	 once this buffer-full condition has been de-
tected, i.e. when a channel write returns less than the requested write
length, and to deregister for +:9KD#;	 once it has cleared, �,�, a chan-
nel write has fully succeeded.

266 ���
���������	������������

channel.socket().bind(new InetSocketAddress(port));
channel.configureBlocking(false);

}

// Runnable. run method
public void run()
{
try
{
Selector selector = Selector.open();
channel.register(selector, SelectionKey.OP_READ);
// loop while there are any registered channels
while (!selector.keys().isEmpty())
{
int keysAdded = selector.select(TIMEOUT);
// Standard post-select processing …
Set selectedKeys = selector.selectedKeys();
synchronized (selectedKeys)
{
Iterator it = selectedKeys.iterator();
while (it.hasNext())
{
SelectionKey key = (SelectionKey)it.next();
it.remove();
if (!key.isValid())
continue;

if (key.isReadable())
handleReadable(key);

if (key.isWritable())
handleWritable(key);

} // while
} // synchronized

} // while
} // try
catch (IOException e)
{
// …

}
} // run()

// handle readable key
void handleReadable(SelectionKey key)
{
DatagramChannel channel =
(DatagramChannel)key.channel();

�������u d p 267

try
{
buffer.clear();
SocketAddress address = channel.receive(buffer);
if (address == null)
return; // no data

buffer.flip();
channel.send(buffer, address);
int count = buffer.remaining();
if (count > 0)
{
// Write failure: queue the write request
// as a DatagramPacket, as this nicely holds
// the data and reply address
byte[] bytes = new byte[count];
buffer.get(bytes);
outputQueue.add
(new DatagramPacket(bytes, count, address));

// Register for OP_WRITE
key.interestOps
(SelectionKey.OP_READ|SelectionKey.OP_WRITE);

}
}
catch (IOException e)
{
// …

}
} // handleReadable()

// handle writable key
void handleWritable(SelectionKey key)
{
DatagramChannel channel =
(DatagramChannel)key.channel();

try
{
while (!outputQueue.isEmpty())
{
DatagramPacketpacket = outputQueue.get(0);
buffer.clear();
buffer.put(packet.getData());
buffer.flip();
channel.send(buffer, packet.getSocketAddress());
if (buffer.hasRemaining()) // write failed, retry
return;

268 ���
���������	������������

outputQueue.remove(0);
}
// All writes succeeded & queue empty, so
// deregister for OP_WRITE
key.interestOps(SelectionKey.OP_READ);

}
catch (IOException e)
{
// …

}
} // handleWritable()

} // end of NIOUDPEchoServer

45�����
�*.� Simple multiplexing ��� echo server

This server never blocks in an I/O operation, only in ��������!������. As we saw
in section 9.2.1, it’s quite a bit simpler than a ��� server, not having to manage
client connections. In multiplexed I/O this means that it doesn’t have to manage
the ���������/�)!��$�������� state, or handle another socket for the connection.
It does have to manage an output queue containing both data and target ad-
dresses. Fortunately the � !���!��
��:�"�� class containing exactly these
data items is already to hand.

269

��������		 ���������udp

��
��	�
������� we introduce ��� multicasting and broadcasting, and how
they are realized in the Java ��
�����"��, �����������"���� and
��
��:�"�� classes. We have already discussed point-to-point or ‘unicast’
��� in Chapter 9 (streams and blocking mode) and Chapter 10 (channel I/O
and non-blocking mode).

��.� ���������	��

Up to now we have dealt only with ������ transmissions, which are sent to and
received by a single 	� address. In essence, unicasting is an addressing tech-
nique. There are other addressing techniques:

(a) A �������� address identifies a dynamic group which can be joined and left:
transmissions are received by all group members, subject to routing poli-
cies.

(b) A ���
��� address identifies a static group representing all 	� addresses in
a net or subnet: transmissions to the address are received by all group mem-
bers, subject to addressing limits and routing policies.

(c) 	��� also plans support for ‘anycast’ addresses. An �)��� address identi-
fies a dynamic group which can be joined and left: transmissions to the ad-
dress are received by �)���� of the group members.1

These techniques are available or planned as shown in Table 11.1.

1. �-� 1546 suggests that an anycast transmission is received by ‘at least one, and preferably only
one’; �-� 2373 specifies that an anycast transmission is received by the nearest group member in
the routing topology.

270 ���
���������	������������

77,7,7 ���������

As we saw in Chapter 9, a ��� datagram is normally sent to a known unicast
address. This action sends a single copy of the datagram to that address, and it is
received only by that address. Normally this is exactly what we want: normally,
there is only one peer that we want to send the datagram to.

If we want to send the same data to more than one peer via unicasting, we must
do multiple sends—we must send out the datagram multiple times. This re-
quirement might arise for example in a multi-player game, a software distribu-
tion application, a video-conferencing system, a multi-media viewing system, a
system to distribute market quotations, ���. Applications like these are only via-
ble if there is a cheaper technique for distributing datagrams than sending out
one per recipient. Can we get the network to do the distribution for us, so that we
only have to send each datagram out once?

The answer is ‘yes’. In addition to unicasting, 	� provides ���
��� and �����$
���. These are supported as special kinds of 	� address. Datagrams sent to either
a broadcast or a multicast address are propagated as necessary by the network,
and need be sent only once—subject to any restrictions imposed by intermediate
routers, and bearing in mind that ��� datagrams only get ‘best-effort’ delivery,
not guaranteed delivery.

Broadcasting and multicasting are also useful when clients need to look for
services. Instead of sending out unicast requests by cycling through a range of
addresses where the service mught be, the client can send out a single broadcast
or multicast request. Instances of the service are listening for such broadcasts or
multicasts, and each instance responds by sending its unicast address back to the
client: this completes the service-location process. The Jini Lookup and Discov-
ery Service uses this technique. ‘Anycast’, when implemented, will be even more
useful for this purpose.

Broadcasting and multicasting are ������ in that they propagate a single data-
gram so as to reach all addressees. Logically speaking, broadcasting to everybody
is a special case of multicasting to a set of recipients. Broadcasting are
�������� in
that broadcasting is indiscriminate, propagating datagrams even where no-one is
listening, whereas multicasting is intelligent, only propagating where multicast
listeners are known to exist. Broadcasting and multicasting also differ in the

��,��
��.� Hierarchy of address typesa

��
� 	��� 	��� ��� ��� ����� -���)�!���

Unicast Yes Yes Yes Yes one one

Anycast No Yes Planned Yes a set any one in set

Multicast Optional Yes No Yes a set all in set

Broadcast Yes No No Yes all all

a. after Stevens, W.R., ���%����	��������������, 2nd edition, Vol I, fig. 18.1.

���������u d p 271

mechanisms used: broadcasting relies simply on normal ��� operations using
special broadcast addresses, whereas multicasting uses new operations and Java
APIs as well as special multicast addresses.

77,7,2 "��
����

������

A ���
����

���� is a special ‘logical’ address which indicates all nodes on a
network. No single node actually has a broadcast address as its 	� address.

	��� defines two major kinds of broadcast address. Remember that 	� ad-
dresses are composed of a network part, the subnet ID, and a host part, where the
network and subnet IDs can be masked off by the netmask. The two kinds of
broadcast address and their semantics are as follows:

(a) The ������
 broadcast address is ‘all ones’, or ��������������� (��!��!��!��): the
network ID, the subnet ID, and the host ID are all ones. Datagrams ad-
dressed to this address will be delivered to and received by all hosts con-
nected to the connected physical network. The limited broadcast address is
intended only for use during host startup, when the local host may not know
its own subnet mask or 	� address yet.

(b) -������
 broadcast addresses are those whose host ID is all ones, and whose
network and subnet IDs indicate the target networks.2 Datagrams ad-
dressed to such addresses will be delivered to all hosts connected to the con-
nected physical network, and received by all hosts on that network whose
network and subnet IDs match those of the broadcast address.

This can be further subdivided. What we have just described is really ‘subnet-directed’
broadcasting; there are also all-subnets-directed broadcasting and net-directed broad-
casting, which we will not discuss here, as they are considered harmful, essentially ob-
solete, and unlikely to be supported by the routers concerned.

Sending a limited or directed broadcast is simply a matter of sending a datagram
to the appropriate broadcast address. Receiving limited or directed broadcasts is
simply a matter of binding a datagram socket to the wildcard address and execut-
ing a receive operation. Broadcasting in Java is discussed in detail in section 11.5.

	��� does not define �) broadcast addresses: their function is superseded by
multicast addresses.3

2. Historically, a host ID of all zeroes was also capable of being interpreted as a broadcast address
in certain circumstances which are now obsolete.
3. Hinden, R. & Deering, S., �-� 2373: 	� Version 6 Addressing Architecture, §2.0.

272 ���
���������	������������

77,7,8 ���������

������

A ���������

���� is a ‘logical’ 	� address which identifies a �������������!,
which in turn is a set of zero or more hosts which have joined the group. Trans-
missions sent to a multicast address are delivered to all current members of the
group. A host must join a multicast group to ������� multicasts, but it is not neces-
sary to join a group to ���
 multicasts to it. Special ��	 operations are provided
for joining and leaving multicast groups.

	��� defines multicast addresses as all 	��� addresses which start with ����
in the most significant four bits, i.e. �� ������ to �!"������������ (�������� to
�#�##�##�##). Addresses in the range �� ������ to �� �������� are reserved for low-
level multicasting support operations.

	��� defines multicast addresses as all 	���
addresses which start with �� in
the high-order byte, �,�, from ##��$$� to ����6����6����6����6����6����6����6����. Some sub-
ranges of this range are reserved.

77,7,9 ���!��

The ���!� of a multicast is the distance it will propagate before being discarded.
The following are some common scope names and their meanings:

(a) ��
�$����—not propagated beyond the local node (i.e. never output by a net-
work interface)

(b) ����$����—not propagated beyond a router

(c) ����$����—not propagated beyond the site, as defined by the site’s network
administrators

(d) �����B����$����—not propagated beyond the organization, as defined by
the organization’s network administrators

(e) ������$����—not propagated beyond the region, however defined

(f) ���������$����—not propagated beyond the continent, however defined

(g) �����—propagated everywhere.

(This list is a mixture of 	��� and 	��� scopes.)
There are two forms of scoping: ��� -based or ‘dynamic’ scoping discussed in

section 11.1.5, and address-based or ‘administrative’ scoping discussed in
section 11.1.6. ��� -based scoping is the older technique: it remains accepted and
recommended, but administrative scoping is preferred where possible.

77,7,4 00A$���
����!��

��� -based scopes are only available in 	��� .
Every 	� packet is associated with a ‘time-to-live’ or ��� . In ��� the ��� is not

within the application’s control,so it is of no interest to us. However, in 	���

���������u d p 273

multicasting, the ��� is used to control the ‘scope’ of the multicast, i.e. how ‘far’
the multicast datagram can propagate.

The default time-to-live for a multicast datagram is one: this means that the
datagram is not forwarded out of the current subnet. A value of zero indicates
that the datagram shouldn’t be forwarded out of the current host (�,�, if multiple
processes within the host are having a closed multicast conversation); values of
two or greater indicate successively larger scopes, as shown in Table 11.2.

77,7,:

����$���
����!��

Multicast addresses are divided into administrative scopes. These have two pur-
poses: they specify how far a multicast datagram will travel, and they specify the
range within which the address is expected to be unique.

In 	��� , the address range �!"������ to �!"������������ is defined as the ad-
ministratively scoped multicast address space. The 	��� administrative scopes
and their corresponding address ranges are defined in �-� 2365 and shown in
Table 11.3.4

In 	��� , the 4-bit ‘scope’ field in the second-highest byte of the multicast ad-
dress explicitly defines the multicast scope. For example, an 	��� address begin-
ning with ##�� is node-local, with ##�� is link-local, and so on. This is the true
meaning of the #���$������ methods such as �������"���� shown in Table 2.3.

A mapping between 	��� scopes and 	��� administrative scopes is defined
in �-� 2365. This information plus the 	��� ��� corresponding to each scope
is shown in Table 11.3.5 Note that this mapping is not one-to-one: several 	���
��� values are unmapped, and ‘site-local’ has different semantics in 	��� and
	��� .

��,��
��.� 	��� TTL-based dynamic scopes

��. ��
�

� node-local

� link-local

%&!� site-local

%&' region-local

%&��(continent-local

%&��� global

4. Meyer, D., �-� 2365:
������������)����!�
�ip ���������.
5. After Stevens, W.R., ���%����	��������������, 2nd edition, Vol I, fig. 19.2, with corrections to
match �-� 2365.

274 ���
���������	������������

77,7,; ����������!�������< ��$���
�
����

In addition to the usual sending and receiving operations, multicast introduces
the operations of *������ and ������ a multicast group. These operations have
several effects:

(a) They form or break an association between the socket’s bind-address and
the multicast address.

(b) They condition the host to receive or ignore messages addressed to the
group.

(c) They condition the nearest router to receive or ignore messages addresses to
the multicast group, subject to multicasting being supported in that router.

(d) The router in turn propagates this conditioning to adjacent routers, and so
on recursively, subject to multicasting being supported in those routers.

These actions are carried out only for the first ‘join’ and the last ‘leave’ of a group,
as follows:

(a) When an application in a host *���� a multicast group, if this causes the
number of members of the group in the current host to increase from zero
to one, the host tells the nearest router (via an 	���6 message) that the host
is now interested in receiving multicasts addressed to the specified multi-
cast group. Subject to the same zero-to-one rule and the router’s own policy,
the router then informs adjacent routers that it wants to receive those multi-
casts, and so on recursively.

(b) Similarly, when an application ����� a multicast group, if this causes the
number of members of the group in the current host to fall from one to zero,
the host tells the nearest router (via an 	��� message) that the host is no

��,��
��.� Administrative and dynamic scopes

	��� ����
� 	��� �
���	� 	��� ���. ��
�����

� � node-local

� �� ������)� � link-local

! �!"��������)�' %&!� unassigned

� site-local

(�!"��"�����)� organization-local

� �� ������&��&�!(������������ %&��� global

6. Internet Group Management Protocol.

���������u d p 275

longer interested in receiving multicasts addressed to the specified multi-
cast group. Subject to the same one-to-zero rule and the router’s own policy,
the router then informs adjacent routers that it no longer wants to receive
those multicasts, and so on recursively.

In this way the entire routing tree eventually comes to know, for each adjacent
router, which (if any) multicast addresses it wants to receive multicasts for, at a
minor cost in 	��� messages—and a cost which scales well to large groups.

When an application closes a socket which has joined but not left one or more
multicast groups, leave-group processing for each such group occurs automati-
cally as part of the close process.

��.� 8���-	��

Multicasting has a number of benefits over unicasting the same information to
the same recipients. Most obviously, there is a substantial saving in network
bandwidth and therefore in network usage costs: if the cost to unicast a given
amount of data to � recipients is T2, the cost to multicast the same data to the
same recipients is T2⁄�. There is also a saving in time to propagate the data to the
� recipients, as the total transmission is completed in 1⁄Ν the time compared to
unicasting it. This has the secondary advantage of reducing the load on the
server.

Another benefit of multicasting is that, ignoring packet loss and retransmis-
sion issues, all recipients receive the data at much the same time. This has useful
applications in time-sensitive applications such as distributing stock-market
quotations (stock tickers).

As compared to unicasting, multicasting becomes more and more economic
the more recipients there are. To put this another way, multicasting is a solution
which scales far better than unicasting.

When the number of recipients is very large, huge-scale applications such as
movie shows over the Internet become technically and economically viable: these
could never be feasible via unicast. In this sense, Internet multicasting is compa-
rable in importance to the introduction of broadcast radio and television.

These economic drivers behind multicast !!�� to be irresistible in the long
term, although at the time of writing there is considerable bandwidth overcapac-
ity in much of the Internet, which suggests that widespread adoption of multicast
is not imminent.

��.� ?	�	���	���

Multicasting in general, including broadcasting as a special case, has three sig-
nificant limitations.

276 ���
���������	������������

�. It is a ��� mechanism and therefore does not offer inherent reliability: it
needs a reliability layer of the kind discussed in section 11.10 and following.

�. It requires co-operation from routers, as discussed in more detail
in section 11.3.1 and section 11.3.3.

�. The question of multicast security is �%������) complex.7

77,8,7 "��
��������
��������

Routers and broadcasts generally do not mix. Routers ����� forward limited-
broadcast datagrams. Routers �) forward directed-broadcast datagrams to
other networks, where they �) be received by the router into those networks. A
router which receives a directed broadcast will deliver it to the locally connected
physical network, where it will be received by all hosts on that network whose
network ID matches the network ID of the address.

However, as �-� 2644 states: ‘While directed broadcasts have uses, their use
on the Internet backbone appears to be comprised entirely of malicious attacks
on other networks.’8 The use of directed broadcasts on the Internet is therefore
discouraged, and probably limited by router policies: according to the Router Re-
quirements RFCs,9 Internet routers may receive and forward directed broad-
casts, but they must also have an option to disable both receiving and forwarding,
and both must be off by default.

77,8,2 "��
���������
���
�'�����

The main problem with broadcasting—as opposed to multicasting proper—is
the unwanted load incurred by hosts which aren’t listening. The broadcast data-
gram is still received by the network interface and propagated upwards through
the various layers of the protocol stack: the device driver, the 	� layer, and the
��� layer, to the point where ��� discovers that the target port is not in use.
Multicasting proper, as opposed to broadcasting, does not share this problem, as
irrelevant multicasts are discarded at the lowest possible level—usually the net-
work interface or device driver—without disturbing the ��� layer at all.

From all these hints, and from the complete absence of broadcasting in 	��� ,
you should conclude that ��� broadcasting is to be avoided if possible. It cer-
tainly should not be considered for any deployment requiring broadcasting
through routers. Use multicasting if possible.

7. So complex that I cannot even begin to discuss it here. For a thorough survey see Hardjono and
Dondeti, ����������
�&���!��������)(Artech House, 2003.
8. Senie, D., �-� 2644: Changing the Default for Directed Broadcasts in Routers.
9. Baker, F., �-� 1812: Requirements for 	� Version 4 Routers, §4.2.2.11 (d), updated by �-�

2644.

���������u d p 277

77,8,8 �������������
��������

Multicasting is supported by a given router if and only if specifically enabled by
its administrator. Currently few ISPs support multicast propagation through
their routers. This is largely a chicken-and-egg problem: presently there are few
multicast applications on the Internet and therefore small demand for multicast
support, which in turn is discouraging the development and deployment of the
applications. This may change over time as multicast applications are developed.

77,8,9 �������������
�����!��������'�!

One of the peculiarities of multicasting is that it provides no built-in way of deter-
mining how many group members currently exist. There isn’t even a way of de-
termining whether �) group members exist. Thus, a group member cannot tell
whether there are any other group members out there. Neither can a transmit-
ting application tell whether anybody out there is listening. These characterist-
sics are important when designing application protocols.

Unless the application protocol provides it, there is no way for a transmitting
application to know how many receivers there currently are: therefore, if re-
sponses are expected, there is no way to determine whether all expected re-
sponses have been received. The transmitter can’t even know whether or not
there is currently any point in transmitting anything.

A solution to this limitation may or may not be required: if it is, the application
protocol must provide an explicit sign-on/sign-off negotiation.

��.� +���	���	���
�-
����	����

We have already seen some major applications of multicast. Here is a more com-
plete list:

(a) Software distribution

(b) Time services

(c) Naming services like ���

(d) Stock-market tickers, race results, and the like

(e) Database replication

(f) Video and audio streaming: video conferencing, movie shows, etc

(g) Multi-player gaming

(h) Distributed resource allocation

(i) Service discovery.

278 ���
���������	������������

In most multicast applications, the ������ is a member of a multicast group. The
server most probably is not, unless it wants to listen to its own output for some
reason. However when multicast is used for service discovery, generally both cli-
ent and server join the multicast group, as seen in the Jini Lookup and Discovery
Service protocol.

��. 8��������	��
	�
1���

The following subsections describe the techniques used for Java broadcasting.
section 11.5.1 describes how to send a broadcast; section 11.5.2 describes how to
receive broadcasts; section 11.5.3 discusses broadcast ‘loopback’; and
section 11.5.4 discusses broadcasting to and from multi-homed hosts.

77,4,7 ���
�������
����

Sending a broadcast in Java is identical to sending a normal ��� datagram to a
broadcast address. Java code to send a datagram via a ��
�����"�� to all
nodes on the current physical network at ��� port 8888 is shown in
Example 11.1.10

To send a datagram to a directed-broadcast address, just change the address as
demonstrated in Example 11.2. This example sends to all nodes in the
�"���'(���* network: change to suit your own network. The example assumes
that the routers will co-operate: as discussed in section 11.3.1, this assumption is
probably invalid.

int port = 8888;
byte[] data = …;// initialization not shown
// send to all nodes on the current physical network
// via the limited broadcast address
InetAddress address
= InetAddress.getByName(“255.255.255.255”);

DatagramPacket packet =
new DatagramPacket(data, data.length, address, port);

DatagramSocket socket = new DatagramSocket();
socket.send(packet);

45�����
��.� Broadcast to current physical network

10. See section 11.5.4 for a discussion of broadcasting from multi-homed hosts.

���������u d p 279

77,4,2 #������������
����

Receiving broadcasts in Java is identical to receiving normal ��� datagrams. It
makes no difference whether the broadcast was sent to a limited or a directed
broadcast address. The receiving socket should be bound to the wildcard ad-
dress.11 This is the default: it can also be explicitly specified as the null
#���$������ when constructing or binding a datagram socket. Some platforms
may support broadcast reception by sockets bound to a specific address.

Java code to receive the datagram which was broadcast to port 8888 by the pre-
vious send examples is shown in Example 11.3.

From "�� 1.4 the receiving socket can be initialized equivalently as shown in
Example 11.4.

Note that the following "�� 1.4 sequence does ��� work:

DatagramSocket socket = new DatagramSocket();
socket.bind(new InetSocketAddress(8888));

because ��
�����"��’s default constructor binds it to an ephemeral local port
(see section 9.3.2): a ��
�����"�� cannot be rebound, so the bind will fail.

// send to all nodes in 192.168.*.*
// via a directed broadcast address
InetAddress address =
InetAddress.getByName(“192.168.1.255”);

45�����
��.� Directed broadcast

11. It ���� be bound to the wildcard address if the host is multi-homed: see section 11.5.4.

int port = 8888;
DatagramSocket socket = new DatagramSocket(port);
byte[] data = new byte[8192+1];
DatagramPacket packet
= new DatagramPacket(data, data.length);

socket.receive(packet);

45�����
��.� Receive broadcast datagrams

DatagramSocket socket = new DatagramSocket(null);
socket.bind(new InetSocketAddress(8888));

45�����
��.� Alternate ��
�����"�� initialization— "�� 1.4

280 ���
���������	������������

77,4,8 "��
�������!���

When an application is both sending and receiving broadcasts to and from the
same port, the application will receive its own transmissions. This ‘local loop-
back’ cannot be disabled. If the application isn’t interested in processsing its own
transmissions, it must check the source of received datagrams via the
��
��:�"��!
��$������ or ��
��:�"��!
�����"��$������ methods,
and ignore those which it sent itself.

77,4,9 "��
�����
������$'�����

Receiving a broadcast in a multi-homed host only requires that the receiving
socket is bound to the wildcard address: this is the default, and it is usually re-
quired for receiving broadcasts anyway. Similarly, sending a directed broadcast
from a multi-homed host presents no difficulty, because the system routes a
directed broadcast to the target subnet via the appropriate interface.

However, sending a limited broadcast from multi-homed host generally
doesn’t work. A limited broadcast should be sent to all connected subnets, i.e. via
all network interfaces. However, as the relevant �-� ‘takes no stand’ on whether
the system must send a limited broadcast via one or all network interfaces, an
application cannot rely on either behaviour.12 The only reliable solution is to
send a directed broadcast to each interface, addressed in each case to the appro-
priate broadcast address. This cannot be programmed automatically in Java,
which provides no access to the netmask, which is needed to compute the corre-
sponding broadcast address: the subnet broadcast address ��� is given by

����1��������V�-�����"�W�����������3 <�=
��.�>

An approximate solution which simply assumes a netmask of ��######�� (class
D) for all local interfaces is shown in Example 11.5.

As shown, this solution will also broadcast to ��+��������, which is only an
internal loopback, and therefore pointless; this broadcast address, or the inter-
face address ��+������, should be filtered out. This and any other adjustments
(e.g. for different netmasks) are left as an exercise for the reader. If you can’t use
the &��'��"#������� feature of "�� 1.4, you’ll have to arrange for the application
to know all its
	 � addresses via some external configuration, or some "�	 horror.
As a last resort, you could also assume a netmask of wider scope, e.g. ��#####���, if
you are really prepared to trust your routers to suppress these broadcasts before
they escape too widely: every bit you clear in the netmask doubles the host ad-
dress space.

Please don’t use this technique: read on and use a multicast solution.

12. Braden, R., �-� 1122, #�>�����������������������G����<�������������A)���, §3.3.6.

���������u d p 281

��.� 7���	����	��
	�
1���

The following subsections describe the techniques used for multicasting in Java.
In section 11.6.1 we will see how to send multicasts; in section 11.6.2 we will

see how to control the time-to-live (���) of a sent multicast; section 11.6.3 intro-
duces multicast receiving operations; section 11.6.4 describes initialization of
multicast sockets; section 11.6.5 describes joining and leaving multicast groups;
section 11.6.6 describes the actual reception process; section 11.6.7 discusses
multicast ‘loopback’ and how to control it; and section 11.6.8 discusses multicast-
ing to and from multi-homed hosts.

DatagramSocket socket = new DatagramSocket();
DatagramPacket packet;// initialization not shown
Enumeration interfaces =
NetworkInterface.getNetworkInterfaces();

while (interfaces.hasMoreElements())
{
NetworkInterface networkInterf =
(NetworkInterface)interfaces.nextElement();

Enumeration addresses
= networkInterf.getInetAddresses();

while (addresses.hasMoreElements())
{
InetAddress inetAddress
= (InetAddress)addresses.nextElement();

byte[] addr = inetAddress.getAddress();
int netmask = 0xffffff00;// (assumes class D subnet)
// form subnet broadcast address
int broadcastAddr = netmask ^ 0xffffffff;
for (int i = 3; i >= 0; i--)

addr[i] |= (byte)(broadcastAddr >>> (3-i)*8);
InetAddress bcAddr = InetAddress.getByAddress(addr);
packet.setAddress(bcAddr);
// assuming data, length, & port are already set
socket.send(packet);

}
}

45�����
��. Broadcast from multi-homed host

282 ���
���������	������������

77,:,7 ���
�������������

Sending a multicast in Java is identical to sending a normal ���datagram to a
multicast address. Java code to send a datagram to a multicast address at ���
port 8888 is shown in Example 11.6.

Note that multicast data can be sent with a ��
�����"��. Of course, by in-
heritance you �� send with a �����������"��, although there is no need to do so
unless you want to ������� multicasts with the same socket, or if you want to use
the advanced sending facilities described in section 11.6.2 and section 11.6.8. As
we will see in section 11.6.4, the constructors for �����������"�� correspond
precisely to those of ��
�����"��, and the inherited ���� and ���� methods
are identical by inheritance.

77,:,2 �������������$��$����

�����������"�� allows you to multicast a datagram with a non-standard time-to-
live. Just call its ���;���;��� � method, or use its overload of the ���� method
which takes a time-to-live parameter:

class MulticastSocket extends DatagramSocket
{
int getTimeToLive() throws IOException;
void setTimeToLive(int ttl) throws IOException;
void send(DatagramPacket packet, byte ttl)

throws IOException;
}

as shown in Example 11.7. This feature is used to implement ��� -based dynamic
scoping as described in section 11.1.5. You can also use these methods to send
datagrams with non-standard ��� values to ���-multicast addresses, if you know
what you are doing.

int port = 8888;
byte[] data; // initialization not shown
// multicast address to send to
InetAddress address
= InetAddress.getByName(“239.1.14.126”);

DatagramPacket packet =
new DatagramPacket(data, data.length, address, port);

DatagramSocket socket = new DatagramSocket();
socket.send(packet);

45�����
��.� Sending a multicast

���������u d p 283

The
��,���;���;��� � methods were introduced in "�� 1.2. "�� 1.1 provided meth-
ods entitled
��;;� and ���;;�, now deprecated, which took and returned a byte value
in the range -128 to +127. ��� values are defined in the range 0 to 255, which is easier to
handle as an integer. Use the
��,���;���;��� � methods or the ���� overload which
takes a ��� parameter.

77,:,8 #����������!�������

Receiving a multicast in Java requires use of a �����������"�� object: it cannot
be done with a ��
�����"��. This in turn requires three distinct operations:

(a) Initializing a �����������"��

(b) Joining a multicast group

(c) Receiving a datagram.

These are discussed individually below.

77,:,9 �������B�����.+
�$���������

A �����������"�� is initialized via one of the constructors:

class MulticastSocket extends DatagramSocket
{
MulticastSocket() throws IOException;
MulticastSocket(int port) throws IOException;
MulticastSocket
(SocketAddress address) throws IOException;

}

If a null ���"��$������ is supplied, the socket is constructed unbound and must
be bound before receiving. This is done with the method:

class MulticastSocket extends DatagramSocket
{
void bind(SocketAddress address) throws IOException;

}

MulticastSocket socket = new MulticastSocket();
int ttl = 4;
socket.setTimeToLive(ttl);
// or
socket.send(packet, (byte)ttl);

45�����
��.! Setting a non-standard time-to-live

284 ���
���������	������������

where������� is an #������"��$������ specifying the 	� address and the port to
be bound, �,�, the address and port at which the socket will receive. The 	� ad-
dress can be omitted or null, indicating the wildcard address; the port can be
zero, indicating a system-chosen ‘ephemeral’ port.

In multicasting, it is most likely that you will bind to the wildcard address, in-
dicating that you want to receive multicasts from anywhere; conversely, it is not
very likely that you’ll bind to an ephemeral port, as you will be joining a multicast
group whose port number has most probably already been defined, as discussed
in section 11.6.5.

Unlike a ��
�����"��, a �����������"�� can be bound to the same address
and port as an existing �����������"�� in the same host (in other words, it uses
the ���D����$������ feature). This allows multiple threads within a " �� to re-
ceive multicasts independently, from the same group or different groups.

77,:,4 ���������
�������

Next you must join the multicast group(s) you will be listening to. This is done
with the methods:

class MulticastSocket extends DatagramSocket
{
void joinGroup(InetAddress mcastAddr)throws IOException;
void joinGroup(SocketAddress mcastAddr,
NetworkInterface intf) throws IOException;

void leaveGroup(InetAddress mcastAddr)
throws IOException;

void leaveGroup(SocketAddress mcastAddr,
NetworkInterface intf) throws IOException;

}

The ���� parameter to the ����*���� and �� �*���� methods specifies the net-
work interface to be used for sending any 	��� messages generated by the
method.13

If this parameter is omitted, ����*���� and �� �*���� implicitly use the

��#������� result to specify the interface for 	��� messages. If you’re sure
you’re in a single-homed host, you can omit this parameter. See section 11.6.8 for
a discussion of multi-homing issues.

It would be a rare system in which the interface specified to ����*���� was different to
the interface specified to �� �*����.

13. The "�� 1.4.0 documentation incorrectly states that the ���� parameter to ����*���� specifies
the local interface for receiving multicast packets. The latter function is performed by the bind
address. See section 11.6.8 for further discussion.

���������u d p 285

A given �����������"�� may join more than one group. Each join must specify
either:

(a) A multicast group which is not currently joined by this socket, or

(b) A multicast group which is currently joined by this socket but is now joined
via a different interface from the previous joins for that group and socket.

If neither of these conditions is satisifed, or the specified address is not a multi-
cast address, an #+	�������� is thrown.

Host operationing systems may limit the number of groups a socket can join,
�,�, to 20 for Berkely-derived implementations.

A socket cannot leave a group of which it is not already a member. If an inter-
face is specified when leaving a group, the socket must have joined the group on
the same interface. If either of these conditions is violated, or the specified ad-
dress is not a multicast address, an #+	�������� is thrown.

77,:,: #������������������

Receiving multicasts in Java is identical to receiving normal ��� datagrams or
broadcasts as shown in section 11.5.2. The receiving socket may be bound to the
wildcard address (the default binding), or it can be bound to an explicit 	� ad-
dress (not recommended—see section 11.5.4).

Java code to join a multicast group and receive a datagram which was sent to
the group on port 8888 is shown in Example 11.8.

An equivalent initialization of the receiving socket using "�� 1.4 features is
shown in Example 11.9.

Note that the following "�� 1.4 sequence does ��� work:

MulticastSocket socket = new MulticastSocket();
socket.bind(new InetSocketAddress(8888));

int port = 8888;
MulticastSocket socket = new MulticastSocket(port);
// multicast address to receive from
InetAddress mcastAddr =
InetAddress.getByName(“239.1.14.126”);

socket.joinGroup(mcastAddr);
byte[] data = new byte[8193];
DatagramPacket packet =
new DatagramPacket(data, data.length);

socket.receive(packet);

45�����
��.& Join and receive multicast datagrams

286 ���
���������	������������

because, as discussed for ��
�����"�� in section 9.3.2, the default construc-
tor for �����������"�� binds it to an anonymous local port. As the socket is al-
ready bound, binding the socket to an explicit port will fail.

77,:,; ������������!���

By default, when an application is both sending and receiving multicasts to and
from the same group, port, and interface, the application will receive its own
transmissions. This ‘local loopback’ can be disabled on some systems via the
methods:

class MulticastSocket
{
boolean getLoopbackMode() throws SocketException;
void setLoopbackMode(boolean loopback)

throws SocketException;
}

The ������" value supplied to the ���������"���� method only acts as a hint,
as the underlying system may not process the request. The actual state of loop-
back is returned by the
��������"���� method.

The meaning of the value of ������" is counter-intuitive: if true, it means that
loopback is
�����
.14

77,:,C ����������
������$'�����

There are three simple rules to be followed for applications which will execute in
multi-homed hosts, or where you don’t know in advance whether the host will be
multi-homed or not:

(a) Multicast datagrams should be sent via each available interface in turn.

(b) Multicast receiving sockets should be bound to the wildcard address.

(c) Join and leave operations should be performed via each available interface
in turn.

MulticastSocket socket = new MulticastSocket(null);
socket.bind(new InetSocketAddress(port));

45�����
��.) Alternative �����������"�� initialization— "�� 1.4

14. In "�� 1.4.0 this seems to have confused the developers too, as it was implemented back-to-
front (i.e. behaves intuitively). This was fixed in 1.4.1. See Bug Parade, bug ID 4686717.

���������u d p 287

These three rules are sufficient to make multi-homed multicasting work. The
reasons for these rules are discussed in the rest of this section.

Multicast is complex in multi-homed hosts, for two fundamental reasons.
First, the system does ��� send multicasts via all local network interfaces: it uses
a single sending interface—the interface specified by the user for the operation
(join, leave, or send) if any, otherwise the interface dictated by the unicast routing
tables. Second, the underlying system design conceivably allows a multicasting
application to use four different network interfaces for four different purposes
simultaneously: joining, leaving, receiving, and sending.

The latter aspect of multicasting causes a lot of confusion.15 Like the underly-
ing Berkely Sockets ��	 , the Java multicasting ��	 uses local network interfaces
or addresses for three different purposes:

(a) Binding the socket

(b) Controlling the interface used for sending

(c) Controlling the interface used for joining and leaving groups.

It is important to understand these different purposes when programming for
multi-homed hosts. The various address/interface items and their purposes are
summarized in Table 11.4.

Setting the sending interface is ���) important in multi-homed hosts (in sin-
gle-homed hosts there is only one choice). What you set it to depends on where

15. Notably among Sun’s Jini developers, the Java ��	 documenters, and certain authors on Java
networking.

��,��
��.� Addresses and interfaces in multicasting

$��� �����!� �����	
�	�

Bind address Constructors of
�����������"��,
����

Determines the 	� address via which
datagrams can be received: defaults to the
wildcard address.a

a. If bound to a specific rather than the wildcard address, it also determines the interface via
which the socket sends unicast and broadcast datagrams, but ��� multicast datagrams.

Send interface ���#�������,
���&��'��"#�������

Determines the network interface via which
multicasts are sent: defaults to a system-
chosen interface in a platform-specific way.

Join & leave
interface

����*����, �� �*���� Determines the network interface via which
	��� join and leave requests are sent:
defaults to the interface returned by

��#������� if omitted.

288 ���
���������	������������

the members of the target multicast group are: if you are sending to a public
group on the Internet, use the most public interface; if you are sending to a pri-
vate group within your own organization, use whichever interface is appropriate
(�,�, possibly the most private). If members of the group can be in only one such
place, you must either:

(a) Ensure that the host knows the correct unicast route to the multicast
group,16 or

(b) Send via the appropriate interface (i.e. do the routing explicitly yourself).

If members of the group are in more than one such place, or if you don’t know in
advance, you ���� send via each appropriate interface in turn, so that the multi-
cast will get to all the right places. Generally speaking this requires sending via
every interface in turn, as shown in Example 11.10.

����	�� . The network interface via which multicasts are ���� can be managed
by the methods:

class MulticastSocket extends DatagramSocket
{
InetAddress getInterface() throws IOException;
void setInterface(InetAddress address)

throws IOException;

16. �,�, by ensuring the appropriate route exists, by executing appropriate ����� commands or
whatever it takes to configure routes on your system.

MulticastSocket socket; // initialization not shown
DatagramPacket packet; // initialization not shown
Enumeration intfs =
NetworkInterface.getNetworkInterfaces();

while (intfs.hasMoreElements())
{
NetworkInterface intf =
(NetworkInterface)intfs.nextElement();

socket.setNetworkInterface(intf);
socket.send(packet);

}

45�����
��.�* Sending multicasts via all interfaces

���������u d p 289

NetworkInterface getNetworkInterface()
throws IOException;

void setNetworkInterface
(NetworkInterface intf)

throws IOException;
}

If not explicitly set, a ������ sending interface is used by the system, chosen ac-
cording to the unicast routing tables. The sending interface cannot be set to null.
The current sending interface can be retrieved with the
��#������� or

��&��'��"#������� methods: these never return null.

,	��	�� . You should almost always bind a multicast socket in a multi-homed
host to the wildcard address. Otherwise it will only receive multicasts via the in-
terface it is bound to, and it won’t receive multicasts from any other subnet. This
is usually undesirable.

"� 	�	��
C
���� 	�� . In a multi-homed host, you should issue ����*���� and
�� �*���� once for���' network interface, as shown in Example 11.11: this is a
multi-homed version of Example 11.8. As we saw above, the system only uses one

route to a multicast address, and 	��� uses multicasts itself. Therefore, for each
group join or leave, the system only sends a single 	��� request via a network
interface of its choosing, and so in effect you have only joined or left the group as
far as the subnet connected to that interface is concerned.17

int port = 8888;
MulticastSocket socket = new MulticastSocket(port);
SocketAddress mcastAddr; // initialization not shown
Enumeration intfs
= NetworkInterface.getNetworkInterfaces();

while (intfs.hasMoreElements())
{
NetworkInterface intf =
(NetworkInterface)intfs.nextElement();

socket.joinGroup(mcastAddr, intf);
}
byte[] data = new byte[8193];
DatagramPacket packet
= new DatagramPacket(data,data.length);

socket.receive(packet);

45�����
��.�� Multi-homed join and receive

290 ���
���������	������������

The system operation underlying the ���#������� method really controls outgoing mul-
ticasts, whereas ����*���� and �� �*�����control incoming multicasts. Prior to "��
1.4, the ���#������� method was overloaded to have an effect on incoming multicasts:
this unfortunate and confusing necessity stemmed from the absence of a
&��'��"#������� class. The overloads introduced in "�� 1.4 for ����*���� and
�� �*���� with a &��'��"#������� parameter should be used in multi-homed hosts
where possible.

In retrospect, not much was gained by giving the programmer three extra opportunities
to specify network interfaces in the multicasting part of the Berkeley Sockets �� 	 . The
design is at a lower level than that for unicasting and broadcasting. Providing so many
places to specify a network interface only provided several unneccesary degrees of free-
dom and several possible sources of error. Multicasting could have been implemented
more completely in the kernel without any major loss of function. The programmer
could have been entirely unconcerned with network interfaces except at bind time;
asocket bound to the wildcard address could have sent all multicasts (including 	���
requests) via all network interfaces; a socket bound to a specific interface could have
sent only via that interface. No doubt the similar, unresolved controversy over multi-
homed broadcasting influenced the design. Anyway it is about twenty years too late to
mention this, which I only do to note that multi-homed multicasting leaves much more
up to the programmer than ��� or ��� unicasting or ��� broadcasting.

��.! 7���	����	��
���
�������
� #$

Because broadcasting just uses ��
�����"���, you can send and receive
broadcasts using the ��� channel I/O techniques of Chapter 10.

Similarly, you can use channel I/O when sending multicasts, provided they
are sent from a ��
�����"�� as described in section 11.6.1, rather than a
�����������"��. This means that you won’t have access to the time-to-live or
sending-interface features.

Support for multicast socket channels was not provided in "�� 1.4: a
� !���!�������!�����������"�������� class was reportedly planned for "��
1.5 but did not appear. When this feature becaomes available it will be possible to
use channel I/O to send and receiving multicasts in a way similar to that already
seen in Chapter 10.

17. Prior to Jini 1.2, this problem existed in Sun’s implementations of the Jini Lookup and
Discovery Service and the ������ Registrar service.

���������u d p 291

��.& 8��������
���
����	����
����	��	���

The Java permissions required for broadcasting when a security manager is in-
stalled are identical to those required for normal ��� operations as described in
Table 9.2.

The Java permissions required for multicasting when a security manager is
installed are summarized in Table 11.5.

In both the broadcast and multicast cases, if a permission is required and not
granted, a � !��
!�������)	�������� is thrown. This is a runtime exception and
is not checked by the compiler.

��.) 7���	����
�������
�������	��

So far we haven’t considered how multicast group addresses are allocated. There
are two general approaches: static and dynamic. These approaches correspond to
the two approaches to port allocation: 5�6 you can statically bind a socket to a fixed
port, or 5��6 you can allow the system to dynamically allocate an ephemeral port.

Static allocation of multicast group addresses requires some central authority
to assign addresses to multicast groups permanently. The 	��� (Internet As-
signed Numbers Authority) performs this function for groups whose scope is the
entire Internet. For example, �-� 1700 reserves �� ������)� for various multi-
cast routing protocols, �� ������)� for various well-known services such as time
protocols, and so on. For multicast groups whose administrative scope is an or-
ganization or site, the relevant network administrator could fulfil the same func-
tion.

Static allocation policies do not scale to large numbers of services, and exhaust
the address space prematurely. This is the motivation for dynamic allocation pol-
icies, which allow addresses to be allocated on demand and released when not in
use. Dynamic allocation requires an allocation service and an allocation protocol.

��,��
��. Multicast SocketPermissions

���	� ������ �����	
�	�

listen address:port Required when constructing or binding a �����������"��
to

����.!���

accept,
connect

address Required when joining or leaving a multicast group at

����

accept,
connect

address Required when sending to

���� if it is a multicast
address

connect address:port Required when sending to

���� if it is not a multicast
address

accept address Required when receiving a datagram from

����

292 ���
���������	������������

�-� 2730 defines ������ —multicast address dynamic client allocation proto-
col.18 ������ provides basic operations for negotiating the dynamic allocation
and release of multicast addresses, as well as a sub-protocol based on multicast
discovery for locating an address allocation server. The details of the protocol are
fairly complex but it is based around a leasing concept similar to ���� ’s and
Jini’s: a client locates a server, requests allocation of one or more addresses for a
stated period of time, and is returned the required number of addresses in asso-
ciation with a lease. The client must renew or release the lease before it expires.
When a lease expires or is released, its associated addresses become available for
reallocation.

The server end of ������ is implemented by Multicast Address Allocation
Servers (����), which are supported by two related protocols. The Multicast Ad-
dress Allocation Protocol (Multicast ���) is used by ���� servers to co-ordinate
address allocations within a domain in order to ensure that they do not collide.
The Multicast Address Set Claim (����) protocol is used by routers to claim
address sets that satisfy the needs of ���� servers within their allocation do-
main. Child domains listen to multicast address ranges acquired by their parents
and select sub-ranges that will be used for their proper needs. When a ����
router discovers that there are not enough multicast address available, it claims a
larger address set.

The client end of the protocol would be supported by a ������ client library
along the lines of the ��	 specified in �-� 2771.19 Implementations of ������
in Java are not yet available at the time of writing.

As an example of an object-oriented �� 	 , it is not too hard to imagine concealing the
������ protocol behind a Jini discovery/lease façade and managing it with a Jini
����D���'���
�� or ����D���'���� ���.

��.�* D��	�,��
����	����

As we keep noting, ��� is an unreliable medium,20 offering only ‘best-effort’
delivery: therefore, raw ��� multicast is also unreliable. The Internet Engineer-
ing Task Force (��-) is running a working group on on reliable multicast trans-
port protocols, whose initial efforts concern 5�6 shareable building blocks for reli-
able multicast (��) protocols and (��6 �� protocols for the ‘one-to-many
transport of large amounts of data’.21

18. Hanna ��� �,(�-� 2730, � -� �<���������

�����
)����� ������� ��������� !�������(

December 1999.
19. Finlayson, R., �-� 2771, �� ������� ����������������

�������������, February 2000.
20. It is sometimes claimed that the ‘� ’ in ��� stands for ‘unreliable’: actually it stands for ‘user’,
but the confusion is understandable.
21. ����6,,'''!����!��
,����!�������,���<������!����.

���������u d p 293

�-� 2887, 0'��#����������������-�������!�������"����-��0������(August
2000, lists a number of application requirements that significantly affect design
or choice of reliable multicast protocols:

(a) Does the application need to know that everyone received the data?

(b) Does the application need to constrain differences between receivers?

(c) Does the application need to scale to large numbers of receivers?

(d) Does the application need to be totally reliable?

(e) Does the application need ordered data?

(f) Does the application need to provide low-delay delivery?

(g) Does the application need to provide time-bounded delivery?

(h) Does the application need many interacting senders?

(i) Is the application data flow intermittent?

(j) Does the application need to work in the public Internet?

(k) Does the application need to work without a return path (�,�, satellite)?

(l) Does the application need to provide secure delivery?

Because of the extent and diversity of this list, it is unlikely that a single protocol
can be designed to meet the requirements of all such applications. The working
group therefore expects to initially standardize three such protocols: a ���� -
based protocol (see section 11.10.2); a tree-based ��� protocol (see
section 11.10.1); and an ‘asynchronous layered coding’ protocol using erasure
codes (see section 11.10.3).

Several higher-level reliable multicast protocols have been developed, and re-
search is continuing in this very interesting area.

77,73,7 0���$���
�!��������

The tree-based protocols rely on multicast group members organizing them-
selves statically or dynamically into receiving trees such that the originating
sender is the root of the tree. Any receiver which finds itself at an interior node of
the tree acts as a ‘group leader’, �,�, assumes some responsibility for retransmit-
ting lost datagrams to the subtree below it. In other words it must maintain some
sort of cache, trying to satisfy incoming retranmission requests from its cache,
only requesting a retransmission itself when the request cannot be satisified
from its own cache. ���� , the Tree-based Reliable Multicast Protocol imple-
ments such a scheme. The adaptive tree-building schemes found in such proto-
cols are often very ingenious, but one might suspect that such solutions are ex-
cessively complex and not sufficiently scalable.

294 ���
���������	������������

77,73,2 ���� $���
�!��������

��� -based protocols retransmit data which hasn’t been acknowledged within
some timeout period. As we saw in section 9.15.6, ���� -based protocols rely on
the receivers sending negative acknowledgements (����s) to inform the sender
that one or more packets need to be retransmitted. ���� -based protocols are
attractive for multicasting because, provided the network isn’t losing too many
packets, the bandwidth required for negative feedback is considerably less than
for positive feedback, and probably scale much better as well. The reliable multi-
cast working group has drafted ���� , a family of ���� -Oriented Reliable Mul-
ticast Protocol.22 ���� , the Lightweight Reliable Multicast Protocol, was an ear-
lier such scheme.23

77,73,8 �)��'��������)���
���
����!��������

The tree-based and ���� -based protocols described above use a combination of
feedback and retransmission to overcome the inherent unreliability of ��� . The
sender can use the feedback to tune its sending rate, satisfying the requirement
for congestion control.

A more promising approach for multicasting of bulk data doesn’t have a feed-
back channel at all, and uses continuous transmission of the data in the form of
high-order erasure codes (see section 9.15.7). This is sometimes called ‘open
loop’. Under erasure codes, � blocks of source data are encoded at the sender to
produce � blocks of encoded data; these are transmitted. The encoding can be
done in such a way that receiving any � distinct encoded blocks is sufficient to
reconstruct the entire source data. This is called an (�(�) linear erasure code, and
it allows the receiver to tolerate loss of up to �−� of a group of � encoded blocks,
so, naively, it can tolerate a packet loss rate of , Complete re-
transmission of the source data � times can be classified as an (�(7) code; the 5��
technique of section 9.15.7 used in ��	� -5 can be classifed as a (�O7(�) code.
Given a well-chosen erasure code function, the overhead in space and time can
be surprisingly small.

Without a feedback channel, a different kind of mechanism for congestion
control is needed. The mechanism chosen by the working group is ‘asynchro-
nous layering’, whereby data is multicast simultaneously to multiple groups at
different rates (�,�, 33.6Kbps, 56Kbps, 128Kbps, and 256kbps), and the receiver
subscribes to whichever group can provide the best throughput without exces-
sive packet loss; this can be determined dynamically. The highest rate at the
transmitter can be determined statically, �,�, by the bandwidth of the uplink to
the sender’s 	 �� . Alternatively, it can be allowed to sort itself out dynamically. By
the properties of multicast, if there are no members of any multicast group (�,�,
in this case the maximum-rate group) beyond any specific router, no transmis-

22. ����6,,'''!����!��
,��������<�����,����<����<���<��<����<��!���.
23. See ����6,,'�����!����!��,����,����<���<����<��!���.

n k–() n⁄

���������u d p 295

sions into the group will occur beyond that router. If there are no members of the
group at all, �,�, the group is being fed faster than can be read by any receiver,
multicasts to the group won’t get beyond the router nearest the transmitter, so
the cost of sending at any unused rate is only borne locally within the sender’s
��� or even perhaps only within the sending host.

The working group has proposed a protocol called ��� —Asynchronous Lay-
ered Coding protocol—in �-� 3450, buliding on the separate ‘Layered Coding
Transport (LCT)’, ‘multiple rate congestion control’, and ‘Forward Error Correc-
tion (FEC)’ building blocks specified in �-� 3451–3.24 Among other features,
these specifications support an open-ended set of linear erasure codes which are
negotiated separately, rather like the way that � �� supports an open-ended set of
cryptographic techniques.

At this point, many a reader may be ‘gagging’ for a Java code example, but Java code to
demonstrate ��� would be both prohibitively lengthy and commercially valuable.25 I
expect a Java framework for ��� with pluggable erasure code implementations to ap-
pear at some stage, along the lines of the Java Reliable Multicast Service described in
the next section.

77,73,9 0'�����#�����������������������

The Java Reliable Multicast Service ("���) is not a product but a research project
from Sun Microsystems Laboratories.26 "��� provides APIs for address alloca-
tion, service advertising, and reliable multicast: as in many Java class libraries,
these constitute a framework behind which multiple implementations can be
provided. "��� supports the experimental protocols ���� and ���� de-
scribed above.

24. See ����6,,'''!����!��
,���,���Q�8�!��� &ff.
25. A commercial implementation of a linear erasure code system is described in the White Paper
for the ‘Digital Fountain’ product which is available online at the Digital Fountain website
����6,,'''!��
����������!���,
����������!���,��������
),�C9����������K����:���9 �!

���.
26. Sun Microsystems Laboratories Inc, Technical Report �� -98-66, abstract and full report
available online via ����6,,'''!����������������!���,���,�������,�������,2RRM,������<

%M!����. The "��� documentation and ��� are available via
����6,,'''!����������������!���,;�������
���,.D��,�����!����. The "��� mailing list had
been inactive for some years at the time of writing.

Part V

In Practice

299

��������	
 ��������
��������
��
���

/�
 ����
 ������0 seen a couple of simple models for ��� servers in
Chapter 3. This chapter discusses advanced models for ��� servers and clients.
We will use blocking stream I/O (introduced in Chapter 3) as well as channel I/O
(introduced in Chapter 5) in both blocking and non-blocking modes.

The discussion is focussed on the performance-related factors of thread usage,
connection usage, queueing techniques, blocking ������ non-blocking mode, and
multiplexing. We will see how these factors can be varied both independently
and in conjunction, and look at the design- and performance-related effects of
doing so.

This chapter is really about server and client design as a numerical exercise.1 It
is not about design patterns, and it is not presented in the design-patterns style.
However, much of the chapter is �����
 to existing design patterns, especially the
D�����, :������, and �����<C����'�� server patterns presented by Schmidt ����
(although they do not present any client-side patterns),2 and I have used the
standard design-patterns terminology of Adapters, Factories, Facades, etc where
appropriate.

I present several short and simple pieces of Java or pseudo-Java code. These
are not presented as the best or only solutions, but to provoke thought and under-
standing in the reader. For the same reason I have not provided anything like an
‘ideal’ implementation or framework for servers or clients. I don’t believe there is
any such thing.

1. It is really an application of elementary queueing theory, which is discussed at an introductory
level in Tanner, M. ��������P�������� ��)���, McGraw-Hill, 1995, Gunther, N. 0'���������
����������� ��)��, McGraw-Hill, 1998, or Martine, R. "����0������ ��)���, Prentice-Hall, 1993.
2. Schmidt ��� �., ������$�������
� ����	��� ��'��������(� =��� 2.� �������� ���� ����������� �

���	����
���*����, Wiley 2000. See also Doug Lea’s invaluable Java redaction of the Reactor and
associated patterns for Java NIO at ����6,,
��!��!��'�
�!���,��,���������,���!���.

300 ���
���������	������������

��.� ������
����������

The following Java ������ statements are required for examples in this chapter,
and are not shown in individual code examples:

import java.io.*;
import java.net.*;
import java.nio.*; // channel I/O examples only
import java.nio.channels.*;// channel I/O examples only
import java.util.*;

��.� :������

Apart from the design of the actual service being implemented, the principal is-
sues to be considered when designing ��� servers are:

(a) The number of clients required to be handled simultaneously.

(b) The length of time required to service each client

Whenever (a) is greater than one, as it usually is, and (b) is non-trivial, as it usu-
ally is, we immediately encounter the need to use Java threads so as not to hold up
other clients while we service the first one. We therefore need to consider:

(a) The creation of processing threads.

(b) The operations performed by a processing thread.

(c) The destruction of processing threads.

These issues interact to some extent.
Trivially (and ignoring exception handling and boundary cases), the process-

ing in a server consists of an connection-accepting loop and a connection proces-
sor:

ServerSocket server;
for (;;)
{
Socket socket = server.accept();
processSession(socket);
socket.close();

}

In the simplest possible server model, everything happens in one thread, like the
sequential server of Example 3.1. We will call this Model A. In the commonest

��������
����������
��� 301

server model, a new thread is created per connection, like the concurrent server
of Example 3.6. We will call this Model B.

72,2,7 /�������)�>��������'���)

We need some tools to analyse the performance of server models. In terms of
elementary queueing theory, a ��� server is a simple queueing network. A queu-
ing network consists of one or more queues and one or more processors as
shown in Figure 12.1.

9	����
��.�. Simple queueing network3

In the case of a ��� server:

(a) ������ are incoming socket connections.

(b) The >���� consists at least of the ‘listen backlog’ queue discussed in
section 3.3.3, plus, as we will see later, perhaps an internal queue of accepted
connections.

(c) ���������� are threads.

Figure 12.1 also shows the names used in queueing theory for a number of pa-
rameters of interest. Trivially, a number of arithmetic relationships hold be-

3. Diagram after William Stallings, P�������� ��)���, © William Stallings 2000, via
����6,,K�����������
�!���,��������������!����. Used by permission.

	 = items waiting
0	 = waiting time

Arrivals

λ = arrival rate

Queue

� = items resident in queueing system
0� = residence time

Processor(s)

0� = service time
ρ = utilization (0–1)

DeparturesDispatching
discipline

� = number of processors

302 ���
���������	������������

tween these parameters. A�����J�������� for the number of items � resident in the
system (�,�, currently queued or being processed) is:

<�=
��.�>

Similarly, the number 	 of items waiting in the queue is given by

<�=
��.�>

The average residence time 0� is given by

<�=
��.�>

The utilization ρ as a number 0 ≤ ρ < 1 is given by

<�=
��.�>

and therefore the number of items � resident in the system is also given by

<�=
��. >

Without getting too deep into queueing theory, we must note here that, depend-
ing on the statistical distribution of services times 0�, the queue length 	 can
increase without limit as ρ→1: the worst-case equation for 	:

<�=
��.�>

is dominated by the factor (because), and therefore follows a
reverse hyperbola.4

This means that the utilization ρ should be kept well below saturation level,
certainly less than 0.7, as can be seen in the graph plotted in Figure 12.2.
With that in mind, we are most interested in designing our servers so as to mini-
mize waiting time at clients, or, to look at it from the server’s point of view, to
maximize the arrival rate. The maximal arrival rate λ�% is given by

<�=
��.!>

Now, the Model A server corresponds to � = 1. Obviously when 0� is non-trivial
this model is severely limited in throughput. It only handles one client at a time:

4. Assuming the queueing-theoretic ‘M/M/1’ model, �,�, Poisson distribution of arrival times and
exponentially-distributed service times, � = 1.

r λT
r

=

w λT
w

=

T
r

T
w
T
s

+=

ρ λ
T
s

N
-----=

r w Nρ+=

w ρ2 1 ρ–()⁄=

1 1 ρ–()⁄ 0 ρ≤ 1<

λ
max

ρ N T
s

⁄×=

��������
����������
��� 303

other clients which attempt to connect while a connection is in progress are
queued up to the limit of the listen backlog, and encounter connection failures
beyond that limit. This model is very simple to program, and it is useless for all
but the most basic purposes. The only occasions when this model could reasona-
bly be employed would be when either 5�6 the service is so trivial that it involves
practically no computation, such as an echo or time service, or 5��6 service time is
small and the nature of the service is such that only one client can be serviced at a
time anyway, such as a very simple logging service which merely writes to an
unsynchronized file.

We can refine Model A slightly, by separating the task of accepting new con-
nection from the task of handling a connection, by using two queues and two
threads. The first queue is the ‘listen backlog’ as before; the first thread continu-
ally accepts new connections and queues them on a second internal queue to a
second ‘worker’ thread; the worker thread continually removes a new connection
from this internal queue and handles it. From the point of view of queueing the-
ory this refinement doesn’t change Model A at all: since the first queue is fed
directly into the second they constitute one large queue. The refined model still

�

�

�

�

�

�

�

�

	

��� ��� ��� ��� ��� ��� ��� ��� ��	 ��

ρ

�

9	����
��.�. Queue length versus utilization

304 ���
���������	������������

forces clients to wait while prior clients are serviced. However, it does solves a
specific ��� problem: the problem of clients getting connection failures. Incom-
ing connections are limited not by the ‘listen backlog’, but by the length of the
internal queue, which may be indefinite; in queueing theory this is known as ‘
lost calls delayed’. This is not in itself a major improvement, but it is conceptually
useful to introduce the notion of an internal queue of new connections, of which
we will make better use later on.

The Model B server has the number of threads , the number of queued
items, dynamically for any � : a new thread is created to handle every waiting item
(every accepted connection). As soon as , parallelism occurs between con-
nections, and therefore between simultaneous clients, because separate connec-
tions are handled in separate threads. This removes the throughput limitation of
Model A, and it is the first server model we can take seriously.

To unify the discussion below, we introduce the following interface, represent-
ing a task which processes a session:5

public interface SessionTask extends Runnable
{
// inherited from Runnable
public void run();
// process a session
public void processSession(Socket connection);

}

This interface extends the D������ interface, so it exports a ��� method, and it
adds a �������������� method, which processes a newly connected ���"��.

We now revisit Model B. Java code for this model, including the
�)�����������;�" class to be referred to later, is shown in Example 12.1. (We
will deal later with implementing the method �������������� of the
�)�����������;�" class.)

class DynamicSessionTask implements SessionTask
{
Socket connection;

DynamicSessionTask(Socket connection)
{
this.connection = connection;

}

5. Extended from ideas in §4.5.1 of Doug Lea, ���������� ����������� ��� ��, 2nd edition,
Addison Wesley 2000.

N r=

N 1>

��������
����������
��� 305

public void run()
{
processSession(connection);

}

// process session, details not shown
public void processSession(Socket connection) {}

}

// driver code: loop handling accepts in new threads
ServerSocket server;// initialization not shown
for (;;)
{
try
{
Socket connection = server.accept();
// Start a new DynamicSessionTask
new Thread
(new DynamicSessionTask(connection))).start();

}
catch (IOException e)
{
// …

}
}

45�����
��.� Dynamic session task class and driver code

This model is very frequently seen, and indeed is used internally by Java
��	#"���.6 Its principal advantage is the simplicity of its programming. It has
two principal disadvantages:

(a) It incurs the overhead of creating a thread for each new arrival: if this is non-
trivial with respect to λ it leads once again to the problem of exceeding the
listen backlog, and hence to client connection failures. In fact, its maximum
arrival rate is limited by the speed with which new threads can be created:

 where 0� is the time to create a new thread.

(b) The number of threads can increase without limit (if connections are long-
lived relative to the arrival rate), ultimately overwhelming the execution en-
vironment at the server. If the number of threads is �, the mean share of the
��� available to each is , and therefore the mean service time 0� is at
best linearly proportional to �, which increases in step with � until we hit a
limit.

6. so far, up to "�� 1.5.

λ
max

1 T
c

⁄=

1 N⁄

306 ���
���������	������������

Realistically, we will hit one or more ‘soft’ limits first, beyond which performance
will degrade. Most probably we will first hit a physical-memory limit, beyond
which performance will degrade for each memory increment according to the
performance curve of the virtual-memory system, but again affecting all threads,
not just the new one.

Sooner or later we will hit a ‘hard’ limit. If it is a thread-count limit, the new
connection gets no service and everybody else proceeds as best they can; if it is
something more serious like a virtual memory limit, the whole server process
may stop. In this case 0� becomes infinite—for all existing threads as well as the
new one which hit the limit. This is a ‘graceless degradation’, illustrated in the
sketch graph of Figure 12.3.

9	����
��.�. Service time, new thread per connection

Servers which expect thousands of concurrent clients need more efficiency and
more reliability than this model provides. We would probably prefer to limit re-
source usage at the server and allow client performance to degrade gracefully up
to a limit of clients, refusing service (‘lost calls’) to clients beyond our limit—a
graceful degradation with self-protection.

We can solve both these problems by arranging to use an existing thread in-
stead of a new thread. If the thread already exists, the creation overhead per con-
nection is zero; we can avoid overwhelming the execution environment at the
server by managing the number of threads which pre- exist; and we can imple-
ment some explicit overflow policy when we receive a connection in excess of
capacity. The next models to be considered use a pool of pre-existing worker
threads, to reduce the process of dispatching a new conversation to simply dis-
patching the new connection to an existing thread.

72,2,2 -��!��'���

A dispatcher despatches each incoming client connection to a service thread. It
can do any one or more of the following:

Service time

LoadPhysical memory limit

Virtual memory limit
Soft limit reached

Hard limit reached

��������
����������
��� 307

(a) Preallocate service threads

(b) Create service threads dynamically.

To implement a preallocated pool of service threads, we will first need a dispatch-
ing mechanism. We will make use of a "�� 1.5�>���"��
X���� for ���"���:

interface BlockingQueue<Socket>
{
// add a Socket to the end of the queue.
boolean add(Socket s);

// take a Socket from the front of the queue,
// blocking while the queue is empty.
Socket take();

}

A basic ������������;�"�class, which uses this interface to obtain sessions, is
shown in Example 12.2. (We will deal with the �������������� method later.)

The code which drives these classes creates a work queue and a number of
������������;�" service threads which share the queue; it then adds incoming
connections (���"���) to the queue. The service threads loop, removing connec-
tions from the queue and handling the associated session. A simple version of
the driver code is shown in Example 12.3 on page 309.

This model, where a fixed number of service threads are created in advance, is
suitable at two extremes:

(a) The number of clients is known in advance (�,�, an ‘intranet’ application like
a call centre with only a couple of thousand operators).

(b) The number of clients is unknowably large and needs to be controlled, be-
cause memory is a critical resource (�,�, an -�� server, which typically only
permit a few hundred connections at a time).

Its simplicity of programming and minor development time are other attrac-
tions.

How many threads should we preallocate? This can be determined by λ, the
expected arrival rate of connections per second, and 0�(�the expected average du-
ration of a conversation. By transposing Equation 12.4, the number of threads �
required to service this rate is given by . We should keep ρ ≤ 0.7,
i.e. no more than 70% utilitization of the server, leaving some ‘headroom’ for
peak loads, and keeping queue size in the flat part of the growth curve.

We may not be able to make this calculation. Either the arrival rate λ or the
mean service time 0� may be highly variable, unknown, or unknowable. If so, or
if we get � wrong by bad estimates of these variables, all the preallocated threads

N λ T
s

ρ⁄×=

308 ���
���������	������������

may easily become busy, and new clients must wait after connecting until a
worker thread becomes idle.

72,2,8 ����������!��������
��
�
)��������������'��
�

If we decide we want to overcome this defect, we can combine the dynamic-crea-
tion and preallocation models: create � service threads in advance �
 create
threads dynamically when no idle service threads are available. We can imple-
ment it in two ways, depending on whether we want the newly created threads to
(i) exit immediately or (ii) become permanent service threads after they have
handled the conversation for which they were created.

We need a '������� method to return the number of threads currently wait-
ing:

int waitCount();

public class MultiSessionTask implements SessionTask
{
private ServerSocket ss;
private BlockingQueue<Socket> queue;

MultiSessionTask(ServerSocket ss,
BlockingQueue<Socket> queue)

{
this.ss = ss;
this.queue = queue;

}

public void run()
{
// loop while socket is open or queue non-empty
while (ss.isOpen() || !queue.isEmpty())
{
Socket connection = queue.take();
processSession(connection);

}
}

// process session, details not shown
public void processSession(Socket connection) {}

}
45�����
��.� ������������;�" class

��������
����������
��� 309

Implementing '������� in ������������;�" is simply a matter of increment-
ing an integer before calling the �"� method and decrementing it on return, as
shown in Example 12.4.
We can combine the driver code of Example 12.1 and Example 12.3, to both preal-
locate ������������;�"� and create �)�����������;�"s when necessary, as
shown in Example 12.5.

In this model, the existing service threads support a maximum arrival rate
λmax of . If 0� is the time to create a thread, the new-thread creation mecha-
nism supports a maximum arrival rate λmax of . Simplistically assuming we
can just aggregate these together (i.e. as though the two parts of the model are
two parallel but independent queues, which isn’t precisely true), the combined
maximum arrival rate would be given by .

We would probably implement this combined model with two separate thresh-
olds, i.e. allowing � permanent threads and up to �′ dynamic threads, so as to
handle temporary peaks by using more resources but releasing them when not
required. Typically �′ would be much smaller than �.

This could be implemented by book-keeping the number of extant permanent and dy-
namic threads, or, much more simply, via the ;����!��� ������ method, which re-

static final int INITIALWORKERTHREADS = 4;// tune this!
// initializations not shown
ServerSocket server;
BlockingQueue<Socket> queue;
// create and start worker threads
for (int i = 0; i < INITIALWORKERTHREADS; i++)
new Thread
(new MultiSessionTask(server, queue)))
.start();

for (;;)
{
try
{
queue.add(server.accept());

}
catch (IOException exc)
{
if (!server.isOpen())
{
break; // for (;;)

}
// …

} // catch
} // for (;;)

45�����
��.� Driver code for preallocated worker threads

N T
s

⁄
1 T

c
⁄

N T
s

⁄ 1 T
c

⁄+

310 ���
���������	������������

turns an estimate of the total number of threads in the current thread group. Some
margin for error must be allowed, remembering that 5�6 this method only returns an
estimate, and 5��6 the driver thread itself counts as a thread in the group. If the server
application uses lots of threads for other purposes, the driver thread should be created
in a dedicated thread group, so that all threads it creates are in the same group.

Implementing this strategy in Example 12.5 is simple, assuming a ��;�����
method which returns a maximum thread-count (which might be constant, vari-
able, or dynamically tuned):

if (MultiSessionTask.waitCount() > 0
|| Thread.activeCount() >= maxThreads())
queue.add(connection);

else
new Thread
(new DynamicSessionTask(connection)))
.start();

72,2,9 "���
�
�>�����

We may want to limit the length of the internal queue, i.e. enforce a maximum
number of waiting items 	�%.

One way of doing this is a modification of the '������� technique above:
when an incoming connection is accepted and there are no idle worker threads,
handle the connection in-line, using a �)�����������;�" directly without
starting a new thread:

private static int waitCount = 0;

public void run()
{
// loop while socket is open or queue non-empty
while (ss.isOpen() || !queue.isEmpty())
{
waitCount++;
Socket connection = queue.take();
waitCount--;
processSession(connection);

}
}

public static int waitCount() { return waitCount;}

45�����
��.� Implementing '�������

��������
����������
��� 311

Socket connection = server.accept();
if (MultiSessionTask.waitCount() > 0)
queue.add(connection);

else
new DynamicSessionTask(connection).run();

Obviously this technique enforces a 	�% of 1. If we want a higher limit, we could
implement a >���"��
X����Y���"��0!��?� method and only enqueue new con-
nections if the queue size is below 	�%, otherwise process them inline as above.

The in-line technique may appear to temporarily increase � to , but this
is irrelevant as λmax is also temporarily reduced to zero: no accepts are executed
while the connection is being handled in-line. (The ‘listen backlog’ is still in ef-
fect, but once that fills, no further connections succeed until some of the backlog
is processed.)

static final int INITIALSERVICETHREADS = 4;// tune this!
// initializations not shown
ServerSocket server;
BlockingQueue<Socket> queue;

// create and start server threads
for (int i = 0; i < INITIALSERVICETHREADS; i++)
new Thread(new MultiSessionTask(queue))).start;

for (;;)
{
try
{
Socket connection = server.accept();
if (MultiSessionTask.waitCount() > 0)
queue.add(connection);

else
new Thread
(new DynamicSessionTask(connection))).start();

}
catch (IOException exc)
{
if (!server.isOpen())
{
break; // for (;;)

}
// …

} // catch
} // for (;;)

45�����
��. Driver code for preallocated and dynamic threads

N 1+

312 ���
���������	������������

72,2,4 -)������'��
��%������������

In the discussion so far, all dynamic threads have exited after processing one con-
nection. Is this the only possibility?

No. Dynamic service threads can exit after one connection (‘one-shot’), as we
have already seen in Example 12.5, but they can also continue life as worker
threads, by subsequently processing a work queue like ������������;�", and
obey some ‘exit strategy’, e.g.:

(a) Never exit, or

(b) exit when idle in accordance with some dynamic exit strategy.

A �)����������������;�" class for case (a) is presented in Example 12.6 on
page 313. The driver code for this model is simply a variant of Example 12.5, creat-
ing �)����������������;�"� instead of �)�����������;�"�.

The ‘dynamic exit strategy’ of case (b) is addressed to the following issue. If we
create threads dynamically and they subequently behave as permanent service
threads, their number increases and never declines. (The number increases
more and more slowly, because the arrival rate λmax supported by the permanent
service threads is �⁄0�, which increases linearly with �, and every increase re-
duces the likelihood that a new thread will be created. In other words � will in-
crease to the number required to service the actual peak arrival rate.)

This means that, after a usage peak, a large number of idle threads still exist,
consuming memory resources if nothing else. We could arrange for these dy-
namic threads to exit in response to some dynamic state of the system, e.g. when
the total number of service threads exceeds a threshold, or when the system as a
whole is idle. The system might be deemed to be idle in a number of ways; for
example:

(a) Some maximum number of idle threads is exceeded. This policy might be
suitable if the number of clients is unknown or subject to large usage peaks,
and it is desired to release resources as quickly as possible. The maximum
could be fixed; alternatively, the system could tune it dynamically in accord-
ance with average and peak usage, perhaps using statistical smoothing tech-
niques, which might be suitable where usage is unknown in advance.

(b) A dynamically-created service thread has been idle for some timeout period.
This is easy to program, and it has the advantage that threads persist during
periods of heavy load and exit during quieter periods, i.e. it is self-tuning.

To implement the idle timeout of (b), we use the timed >���"��
X����!����
method:

// Return head of queue, or null if ‘timeout’ expires
Socket poll(int timeout, TimeUnit unit);

��������
����������
��� 313

and modify the �)����������������;�" class to use this method:

connection = queue.poll(timeout, TimeUnit.SECONDS);

The timeout might sensibly be a minute or two.

72,2,: -��!��'������������

So far we have used an explicit queue of accepted sockets for dispatching new
connections. Another dispatching technique exists, although there seems to be
little awareness of it. Multiple threads may execute ��� �����"��!����� simulta-

public class DynamicMultiSessionTask
implements SessionTask

{
private ServerSocket ss;
private BlockingQueue<Socket> queue;
private Socket connection;

DynamicMultiSessionTask(ServerSocket ss,
BlockingQueue<Socket> queue,
Socket connection)

{
this.ss = ss;
this.queue = queue;
this.connection = connection;

}

public void run()
{
// process initial connection
processConnection(connection);
// process queue until done
while (ss.isOpen() || !queue.isEmpty())
{
connection = queue.take();
processConnection(connection);

}
// queue terminated

} // run()

// process connection, details not shown
public voidprocessConnection(Socket connection) {}

} // end class
45�����
��.� �)����������������;�" class

314 ���
���������	������������

neously. The real queueing occurs via Java synchronization inside
��� �����"��!����� and, at a lower level, within the underlying ��� implementa-
tion (in the ������ queue discussed in section 3.3.3).

This technique works without a physical queue: e.g. in the preallocated thread
technique of Example 12.2, using the driver code of Example 12.3, the entire
���-443 loop is removed, i.e. you merely create the required number of
������������;�" objects and have them obtain connections via ��!�����-3 in-
stead of H����!�"�-3.

As in section 12.2.4, even though there is no queue, this technique has the
same effect of bounding the queue length, and therefore of limiting the arrival
rate, because if there are no idle worker threads, none of them are accepting con-
nections.

72,2,; �����)������

The threading models resulting from different choices of the various parameters
presented in the preceding sections are summarised in Table 12.1.

��,��
��.� Threading models and parameters a

������
��

��/
��������!
�����!�

#�����
!���	�
�����!�

��	�

��	�� λ��� -����%�

A None No – 1⁄0� Serial servicing of clients; arrival
rate limited by length of service; 0�
is unaffected by load; clients
encounter connection failures if
listen backlog is exceeded.

B None Yes 1-shot 1⁄0� Simple model usually seen.
Concurrent connections do not
wait for service; arrival rate limited
by time to create a new thread; 0�
depends on load, i.e. 0� varies
with � ; clients may encounter
connection failures if listen backlog
is exceeded.

C � No – �⁄0� Process es � conversations in
parallel; arrival rate independent of
0�; 0� varies with 1⁄�; clients wait
when � > �.

D � Yes 1-shot Incremental improvement over (B):
only every �th connection incurs a
thread-creation overhead.

N T
s

⁄ 1 T
c

⁄+

��������
����������
��� 315

Thread-creation and exit strategies are summarized in Table 12.2.

72,2,C ��������'�
����

Having now presented a framework for managing threads, we will now separate
the concerns of thread-pool management and session-handling form each other.
0'��
$!������������ is really an aspect of the internal construction of the

E None Yes never As (D), where Dynamic threads become worker
threads after completing their first
conversation. Number of threads
grows to peak usage and never
declines. Behaves like (D) with
adaptive �.

Could vary this by creating
dynamic threads only if � Q some
maximum.

F None Yes dynamic As (D), where As (E), but thread count declines
after peaks.

G � Yes never As (D), where As (E), but thread count starts at �
instead of zero.

H � Yes dynamic As (D), where Combines (G) and (F).

a. 0� = mean time to create a thread.

��,��
��.� Exit strategies

��!�� #��������	��	�� -����%�

null Never exit. Threads increase indefinitely as required by peak
loads.

one-shot Exit after one
conversation.

Threads are always at a minimum; maximises thread-
creation overhead.

dynamic Exit on some
dynamic
condition, e.g.
‘system idle’.

Reclaim threads after peak load. ‘System idle’ needs to
be suitably defined, e.g. the number of idle threads
exceeds a static or dynamic threshold, or the thread is
idle for some timeout period.

��,��
��.� Threading models and parameters (continued)a

������
��

��/
��������!
�����!�

#�����
!���	�
�����!�

��	�

��	�� λ��� -����%�

N N
max

=

N r=

N N
max

=

r N N
max

< <

316 ���
���������	������������

server concerned with servicing the network efficiently. �������$'�
���� is really
an aspect of the application proper, dealing as it does with application protocols
and services. We would like to be able to vary these independently. In the frame-
work of this chapter, this means providing implementations of �������;�" im-
plementing various threading models and policies while implementing session-
handling separately. To this end we introduce an intermediate session-handler
interface:

interface SessionHandler
{
void processSession(Socket connection);

}

and a factory interface:

interface SessionHandlerFactory
{
SessionHandler createHandler();

}

The factory provides a single point where connection-handling implementations
can be substituted without disturbing the rest of the application. In addition, the
factory may implement its own allocation policy: for example, it might return a
new handler object per invocation:

SessionHandler createHandler()
{
return new MySessionHandler();

}

or a singleton handler object:

private SessionHandler handler = null;
synchronized SessionHandler createHandler()
{
if (handler == null)
handler = new MySessionHandler();

return handler;
}

or a handler object per thread:

private ThreadLocal handlers = new ThreadLocal();
SessionHandler createHandler()
{

��������
����������
��� 317

SessionHandler handler = (SessionHandler)handlers.get();
if (handler == null)
{
handler = new MySessionHandler();
handlers.set(handler);

}
return handler;

}

or whatever else is appropriate. Using a factory provides a single point in the code
where this policy can be changed.

We can then define the �������;�"!�������������� method in the various
classes presented earlier to use a separate connection-handler factory, as out-
lined in Example 12.7 below.

public class MultiSessionTask implements SessionTask
{
private BlockingQueue<Socket> queue;
private SessionHandlerFactory factory;

// constructor
MultiSessionTask(BlockingQueue<Socket> queue,
SessionHandlerFactory factory)

{
this.queue = queue;
this.factory = factory;

}

public void run()
{
// …

}

public void processSession(Socket socket)
{
factory.createHandler().processSession(socket);

}
}

45�����
��.! Session task class with separate handler factory

72,2,D �������������
���

In transactional application protocols where a ‘conversation’ consists of a single
request and reply, either:

(a) A connection is only used for a single conversation, or

318 ���
���������	������������

(b) a connection can be used for multiple conversations.

Case (a), the ‘one-shot’ case, is enforced in the server by closing the connection
after sending the reply. In pseudo-code:

public void processSession(Socket socket)
{
receive(request);
// process request and construct reply, not shown …
send(reply);
// close connection
socket.close();// exception handling not shown

}

Case (b), the ‘multi-shot’ case, is used in conjunction with the client-side connec-
tion-pooling strategy described in section 12.4.1. It is implemented in the server
by writing the main connection handler as a loop. In pseudo-code:

void processSession(Socket socket)
{
while (receive(request)) // i.e. while not end-of-stream
{
// process request and construct reply, not shown …
send(reply);

}

// close connection
socket.close();// exception handling not shown

}

As always in servers, a finite receive timeout should be used, to prevent connec-
tions being tied up for excessive periods. Implementing the multi-shot case in
the server does not ���!�� the client to use the connection for more than one
conversation, but it makes it !�������. It is a necessary but not sufficient condition.

End-of-stream is indicated at the server in different ways depending on what
operation is being attempted: a negative result from #���������!��� or
D�����>)��������!���, or an 	+C	�������� from ��#����!���LLL or
+�����#����!���+�����.

72,2,73 �������

There are several points at which the server may choose to close a connection:

(a) On receipt of an end-of-stream when reading the connection.

(b) If the request or the client is deemed invalid.

��������
����������
��� 319

(c) On detection of a read timeout or idle timeout on the connection.

(d) After writing a reply.

Generally, several of these strategies are employed for safety, rather than just
one. For example, implementing just (a) leaves control of the connection com-
pletely up to the client. This is most undesirable in a server: you don’t want ill-
behaved clients tying up server resources indefinitely, so you would generally
implement at least cases (a) and (c). Case (d) only applies if conversations are
‘one-shot’ or if it is desired to be rid of the client after this particular reply for
some other reason, possibly related to the semantics of the reply (�,�, in response
to a logout request).

��.� �������
�#$
�������

We can make quite a few refinements to the models presented above by using
channel I/O instead of blocking stream I/O in the server.

72,8,7 -��!��'����	��'����������

We can use a �������� to tell us when a channel becomes ready. We first encoun-
tered selectors in Chapter 4 as part of the channel I/O introduced in "�� 1.4. To
use channel I/O on a ��� �����"��, we saw in section 5.1.2 that we must create a
��� �����"�������� object, bind it, and use non-blocking mode:

static final int PORT; // initialization not shown
ServerSocketChannel server = ServerSocketChannel.open();
server.socket().bind(new InetSocketAddress(PORT));
server.configureBlocking(false);
Selector selector= Selector.open();
SelectionKeykey = server.register
(selector, SelectionKey.OP_ACCEPT);

int nSel = selector.select();

If only server socket channels are registered with this selector, an accept opera-
tion must be ready if the ������ method returns non-zero, because +:9$��	:; is
��� �����"��������’s only valid operation.

The implicit queuing technique of section 12.2.6 can of course be used with a
�������� instead of a ��� �����"��. The implicit queue forms inside the
��������!������ method, or you can think of the ���)��� iterator constituting the
queue. When coding this, remember to use ��� �����"��������!����� rather
than ��� �����"��!�����.

Selectors can be used at the connection-accepting level to manage more than
one server socket channel in a single thread, �,�, to multiplex them, as described
in section 12.3.2. They can also be used if it is wished to create dynamic threads

320 ���
���������	������������

only if no workers are idle. Selectors can be used to detect incoming connections
without actually accepting them: this leads to a better implementation which
never starves worker threads or creates dynamic threads unnecessarily, as shown
in Example 12.8 below.

ServerSocketChannel server;// initialization as above
Selector selector = Selector.open();
SelectionKey key =
server.register(selector, SelectionKey.OP_ACCEPT);

for (;;)
{
// clear previous result
selector.selectedKeys().clear();
int nSel = selector.select();

// If channel is ready and no threads are idle,
// accept a connection in-line
if (nSel > 0 && MultiSessionTask.waitCount() == 0)
{

SocketChannelsocketChannel = server.accept();
if (socketChannel != null)
{
// still no idle thread, because we got a
// connection: create a dynamic thread
Socket connection = socketChannel.socket();
SessionTask p =
new DynamicMultiSessionTask(queue,connection);

new Thread(p).start();
}

}
}

45�����
��.& Dynamic threads and ���"��������$�������
X����

72,8,2 �����!��%���

So far we have used one active thread per open connection: �,�, we have a 1::1 ratio
between threads and connections. In a server which expects thousands of con-
current connections, this means thousands of active threads, each with its own
call stack and internal control structures, and its presence on process scheduling
queues. When the number of connections is high but the input rate per connec-
tion is relatively low, it makes sense to reduce this ratio of 1::1 to a ratio of 1::�,
where each thread manages an average of � connections, so that our � service
threads can handle a total of connections. This allows us to reduce � or
handle more connections, or both.7

M N×

��������
����������
��� 321

If we could implement this and choose our parameters in advance, we might
choose � according to our memory or thread-count capacity, and � such that

 is the average input rate per connection expressed as a fraction of band-
width, �,�, on a scale of 0 to 1.

How can we implement this?
We could control multiple connections from one thread by using short socket

timeouts in conjunction with a !������ technique whereby we scan all our connec-
tions for input, as shown in Example 12.9 below.

List connections; // initialization not shown
byte[] buffer; // initialization not shown

for (;;)
{
Iterator connectionIterator = connections.iterator();

while (connectionIterator.hasNext())
{
Socket connection = (Socket)connectionIterator.next();
try
{
int count = connection.getInputStream().read(buffer);
if (count < 0)// EOF
{
connection.close();
it.remove();

}
// process incoming data on this connection …

}
catch (InterruptedIOException exc)
{
continue;// no data on this connection

}
} // while

} // for (;;)

45�����
��.) Pollling for input

This technique is poor. We have no means of deciding which connection to scan
for input next, so we must just cycle round them. If the next ready connection is
the one before the one we are about to read, it has to wait for timeouts to occur on
all the other connections being polled. This worst-case situation is not at all unre-
alistic: it occurs when only one of the connections is active.

7. See also Lea, �!,���,, §4.1.5.

1 M⁄

322 ���
���������	������������

We could poll in non-blocking mode. This would at least have the virtue of
wasting zero time waiting for timeouts, but the problem then becomes what to
do when no input is available on any channel: sleep a few milliseconds? Yield the
thread? Just spin furiously round the polling loop? We’d rather do nothing rather
than just wasting processor cycles, and we’d rather be told rather than having to
keep looking.

We could use ���"��!
��#���������-3! �����-3 to tell us when input is avail-
able on a socket, again wasting zero time on timeouts: this is a slight improve-
ment because we only
����� the input without actually reading it. The question
remains of what to do when no input is available on any socket.

The I/O multiplexing feature introduced in "�� 1.4 and described in Chapter 3
and Chapter 4 provides the solution: use ��������!������ to tell us both 	'�� and
	'��' of a number of registered channels is ready for I/O. In servers where con-
nections are not always busy, or servers on the Internet (�,�, Web servers) where
maximum concurrency is ultimately more important than responsiveness to in-
dividual clients, I/O multiplexing should be used.

Multiplexing can be used at the connection-accepting level, the conversation
level, or both. At the ����������$���!���� level, we have already seen the use of
parallel non-blocking accepts in conjunction with selectors in section 12.3.1 . It is
a simple generalization of section 12.3.1 to multiplex this process across multiple
server sockets, which is useful if the server is servicing multiple ports, or the
same port on multiple addresses: all we need to do to the code of section 12.3.1 is
to create the additional ��� �����"��� and register them with the selector.

At the ����������� level, multiplexing only makes sense if worker threads are
being used, either on their own or in conjunction with dynamic threads. Decid-
ing how to use multiplexing at this level requires a bit more analysis. We need to
consider these factors:

(a) Whether to permanently associate a connection with a thread, or allow any
thread to process any connection.

(b) If the former, how to assign connections to threads, and how to do so in
such a way that the load is shared evenly.

(c) How to actually implement each thread.

72,8,8 �������������������������'��
�

There are two strategies for allocating connections to threads: ‘do’ and ‘don’t’.

(a) If 5�6 the server is ‘stateful’, �,�, if a connection is associated with client state,
or if requests are long or multi-part, and 5��6 the underlying service is thread-
oriented (�,�, a database service), it may be convenient to allocate each con-
nection permanently to a specific thread.

This is trivial to implement. If we are using an explicit queue of connections,
we only need to enqueue a new connection and it will be picked up by an idle

��������
����������
��� 323

thread. If we are using an implicit queue as in section 12.3.1, again an idle
thread will pick up a new connection. Both of these are more or less self-
tuning: the idlest threads will tend to pick up the most connections, upon
which they will become less idle, when they will tend to pick up fewer con-
nections, until some of their connections terminate and they become idle
again.

(You could also organize all this by hand, by book-keeping the level of activ-
ity of each thread, maintaining a separate explicit queue to each one, and
choosing the queue to dispatch a new connection to on the basis of its statis-
tics. The effect will be exactly the same as letting the system sort itself out
with a single dispatch queue, assuming that your statistics are both accurate
and well-used: if they aren’t, the situation will be worse. It’s hard to see why
you would bother doing it ‘manually’.)

(b) If the server is stateless and requests and service times are short, or the un-
derlying service is not really thread-oriented and can be handled by any
thread, it is better to allow any thread to process any connection. This gives
better throughput, as your bank and supermarket demonstrate: at the bank,
there is generally one queue for multiple tellers; at the supermarket, there is
generally one queue per checkout. The bank’s system gives better through-
put.

In scheme (a), each thread uses its own unique �������� object, with registrations
for the ��� �����"�������� and its own ���"�������� connections. In scheme
(b), all threads share a single �������� object, with registrations for the
��� �����"�������� and all ���"�������� connections. Implementing this is
just a matter of whether the thread is constructed with a �������� argument or
whether it constructs its own ��������; otherwise, processing is identical, as
shown in the �����������
B����� class sketched in Example 12.10 below.

Selector selector;

// Constructor for shared selector handling any connection
MultiplexingHandler(Selector selector)
{
this.selector = selector;

}

// Constructor handling connections from a single
// ServerSocket only via a private selector
MultiplexingHandler(ServerSocketChannel server)
throws IOException

{
this(Selector.open());
server.register(selector, SelectionKey.OP_ACCEPT);

}

324 ���
���������	������������

// NB exception handling not shown …
public void run()
{
for (;;)
{
selector.select();
Set readyKeys = selector.selectedKeys();
synchronized (readyKeys)
{
Iterator readyKeysIterator = readyKeys.iterator();

while (readyKeysIterator.hasNext())
{
SelectionKey key =
(SelectionKey)readyKeysIterator.next();

it.remove();

if (key.isValid() && key.isAcceptable())
{
ServerSocketChannel server =
(ServerSocketChannel)key.channel();

SocketChannel channel = server.accept();
if (channel != null)
{
channel.configureBlocking(false);
channel.register
(selector, SelectionKey.OP_READ);

} // if ()
} // if ()

// handle isReadable() and isWritable states:
// see below …

} if ()
} // while ()

} // for ()
} // run()

45�����
��.�* Multiplexing handler

If we want to enforce limits on ���' � and �, we just need to keep track of idle
threads �
 the average or actual connections per thread when applying the tech-
niques of section 12.2.3 or section 12.2.4. The simplest way to track � is to book-
keep the actual number of currently open connections, which we haven’t had
occasion to do before now.

If we don’t want to control � explicitly, we can just let it grow and let service
get slower proportionately, because now and 0� varies with �.

Assuming the latter, we can get rid of the >���"��
X����Y���"��0 interface,
which was really introduced to show that queueing and accepting techniques are

r w N M ρ××+=

��������
����������
��� 325

largely independent of threading models. Throughout the rest of this section we
will use ��������� explicitly instead of queues, and we will use the parallel-accept
technique of section 12.3.1, which is especially appropriate when using multi-
plexing and selectors. Applying control of � and � to the ideas presented below
is ‘left as an exercise for the reader.’

72,8,9 �����!��%�����
����

A thread multiplexing one or more sockets needs to process the +:9D	$� and
+:9KD#;	 events. Sockets used with a selector must be in non-blocking mode,
which means we must use channel I/O and buffers. This suggests that every
channel needs to be associated with an input buffer and an output buffer (al-
though in some circumstances the input and output buffers can be the same).
The channel must also be associated with a ‘readable’ action to be triggered when
input data arrives, and a ‘writable’ action to be triggered when output data can be
written to the channel.

All these items represent the minimum ‘context’ of a channel. We saw
in section 4.5.6 that context can be associated with channels by using the ‘attach-
ment’ feature of selection keys. Let’s postulate a B����� interface like this:

interface Handler
{
void handle(SelectionKey key) throws IOException;

}

Without yet inquiring too closely into what the ������ method might actually
do, we can process ‘acceptable’, ‘readable’, and ‘writable’ events for the channel
uniformly like this:

// …
selector.select();
Set readyKeys = selector.selectedKeys();
synchronized (readyKeys)
{
Iterator readyKeysIterator = readyKeys.iterator();
while (readyKeysIterator.hasNext())
{
SelectionKey key =
(SelectionKey)readyKeysIterator.next();

it.remove();
if (!key.isValid())
continue;

Handler handler = (Handler)key.attachment();
handler.handle(key);

326 ���
���������	������������

}
}
// ...

What do the ������ methods do? There are two kinds:

(a) a request handler, whose basic abstract implementation looks like this:

abstract class RequestHandler implements Handler
{

public void handle(SelectionKey key) throws IOException
{
if (key.isReadable())
readable(key);

if (key.isWritable())
writable(key);

}

abstract void readable(SelectionKey key)
throws IOException;

abstract void writable(SelectionKey key)
throws IOException;

}

(b) an accept handler whose implementation looks like this:

class AcceptHandler implements Handler
{
public void handle(SelectionKey key) throws IOException
{
if (!key.isAcceptable())

 return;
ServerSocketChannel ssc =
(ServerSocketChannel)key.channel();

SocketChannel sc = channel.accept();
if (sc == null)

 return;
RequestHandler rh = new RequestHandler(sc);
key.selector().register(sc, SelectionKey.OP_READ, rh);

}
}

For an echo server, the request handler can be as simple as Example 12.11 below,
using only one buffer:

��������
����������
��� 327

class EchoRequestHandler extends RequestHandler
{
ByteBuffer buffer = ByteBuffer.allocate(16384);

void readable(SelectionKey key) throws IOException
{
SocketChannelchannel = (SocketChannel)key.channel();
int count = channel.read(buffer);
if (count < 0)
channel.socket().shutdownInput();

else
writable(channel);

}

void writable(SelectionKey key) throws IOException
{
SocketChannelchannel = (SocketChannel)key.channel();
// write
buffer.flip();
int count = channel.write(buffer);
buffer.compact();
// did the write complete?
if (buffer.position() > 0)
// No: register for OP_WRITE
key.interestOps
(key.interestOps()|SelectionKey.OP_WRITE);

else
// Yes: deregister for OP_WRITE
key.interestOps
(key.interestOps() & ~SelectionKey.OP_WRITE);

// close when finished reading & writing
if (count == 0 && channel.socket().isInputShutdown())
channel.close();

}
}

45�����
��.�� Echo server D�H����B�����

The ������ method above reads as much data as can be read from the channel
without blocking and as will fit into the buffer, whichever is smaller. Conversely,
the '������� method will write whatever data can be written from the buffer to
the channel without blocking, up to the smaller of the data available in the buffer
and the space available in the socket send-buffer. In both cases Java updates the
buffer state according to how much data was actually transferred. After writing,
the buffer is compacted to discard what was written and make room for more.
We can’t assume that reads and writes strictly alternate, and the code above does

328 ���
���������	������������

not do so: there may be multiple reads in a row, and multiple writes. The internal
state-management of the buffers takes care of all the book-keeping for us.

At the end of input we shutdown the input of the socket, mainly as a signal to
ourselves later; when we have written everything out and we find we’ve shut-
down the input, we close the channel. This automatically cancels the channel’s
registration with the selector, which in turn results in the channel key never be-
ing returned in the selected-set of the selector, and hence no further calls of the
������method for the associated channel context. It also results in the release of
the ���������/�) and the context object, in this case the D�H����B�����.

The ����� method in a file server would be identical, and the ������ and
'������ methods , using file channel I/O, might look like Example 12.12 below.

class FileHandler extends RequestHandler
{
ByteBuffer inputBuffer = ByteBuffer.allocate(16384);
FileChannelfileChannel = null;
long position = 0;

// handle() method is inherited from RequestHandler

void readable(SelectionKey key) throws IOException
{
// read a request from the socket.
SocketChannel channel = (SocketChannel)key.channel();
try
{
int count = socketChannel.read(inputBuffer);
if (count < 0)
{
// EOF trying to read filename
socketChannel.close();
return;

}
String request = Charset.forName(“UTF-8”)
.decode(inputBuffer).toString();

String filename; // extract from request, not shown …
this.fileChannel =
new FileInputStream(filename).getChannel();

this.position = 0;
writable(key);

}
catch (IOException exc) { /* … */ }

}

void writable(SelectionKey key) throws IOException
{
if (fileChannel != null)

��������
����������
��� 329

{
SocketChannel channel = (SocketChannel)key.channel();
try
{
long count = fileChannel.transferTo(position,

fc.size() − position,
socketChannel);

if (count < 0) // EOF
{
fileChannel.close();
fileChannel = null;
socketChannel.close();

}
else
position += count;

// Register/deregister for OP_WRITE according as
// count is/is not shorter than requested.
if (position < fc.size())
// register for OP_WRITE, write more next time
key.interestOps
(key.interestOps()|SelectionKey.OP_WRITE);

else
{
// deregister for OP_WRITE
key.interestOps
(key.interestOps() & ~SelectionKey.OP_WRITE);

// close file
fileChannel.close();
fileChannel = null;

}
}

}
catch (IOException exc)
{
/* … */

}
}

45�����
��.�� File server—������ & '������ methods

The file-server example uses another approach towards closing the socket: as-
suming that there is only one filename request per connection, the channel is
closed when the output data has been completely transferred; it is also closed as a
safety measure if there is no request data at all. It should also be closed if the
request is invalid.

330 ���
���������	������������

72,8,4 #�
�����'����>����

An echo server only has to echo whatever comes in whenever it appears, but the
file-server of Example 12.12 assumes that the entire request was read in one read.
This is a most unreasonable assumption. In general we can either:

(a) Use a large enough input buffer to hold any request, and keep accumulating
data in it until the request is complete, or

(b) put the channel into blocking mode and use stream I/O to assemble the
entire request.

Accumulating data in non-blocking mode requires application-specific logic to
examine the buffer after each read to determine whether the request is complete
yet. Depending on the application protocol, this may be very easy, e.g. if you are
expecting 384 bytes, or 1024 Java �������, or a byte-count followed by that many
bytes:

void readable(SelectionKey key) throws IOException
{
SocketChannel channel = (SocketChannel)key.channel();
int count = channel.read(inputBuffer);
if (inputBuffer.position() == inputBuffer.get(0)+1)
; // request is complete …

}

On the other hand it may be difficult, �,�, if the request can be an arbitrarily long
string like an ���� request. It may even be impossible, �,�, if the request was sent
via Java serialization. In such cases, the simplest approach may be to read the
request in blocking mode. This requires less application-specific logic, but more
generic logic. We must:

(a) Cancel the registration of the channel with the selector,

(b) Put the channel into blocking mode,

(c) Probably set a socket read timeout, and

(d) Obtain an #���������, ��#���� or +�����#�����stream for the channel.

For example:

// put channel into blocking mode
key.cancel();
SocketChannel channel = (SocketChannel)key.channel();
channel.configureBlocking(true);

��������
����������
��� 331

// set a read timeout in ms
channel.socket().setSoTimeout(timeout);

// read request via ObjectInputStream
InputStream in = Channels.newInputStream(channel);
in = new BufferedInputStream(in);
ObjectInputStream objIn = new ObjectInputStream(in);
Object request = objIn.readObject();

72,8,: ?��������'����!�)

Similarly, we can write the reply in either blocking or non-blocking mode. It is
simplest to write it in blocking mode, remembering that socket writes only block
while data to be written exceeds the space available in the socket send-buffer.
This is also best for the network, as it generates the minimum number of distinct
��� segments and transmits them at the best possible rate; it also avoids waking
up the receiver multiple times to receive the bits and pieces of the reply. For ex-
ample, if the reply is an +�����:

// write reply in blocking mode
Object reply; // …
SocketChannel channel = (SocketChannel)key.channel();
Socket socket = channel.socket();
OutputStream out = Channels.newOutputStream(channel);
out = new BufferedOutputStream
(out, socket.getSendBufferSize());

ObjectOutputStream objOut = new ObjectOutputStream(out);
objOut.writeObject(reply);
objOut.flush();

The main reason for writing the reply in non-blocking mode is to avoid being
stalled by the client when the reply is large. If the client doesn’t read his end of the
connection fast enough, eventually his socket receive-buffer will fill, which will
eventually cause our socket send-buffer to fill, which will cause a blocking write
to stall indefinitely. To protect ourselves against this situation we must use non-
blocking writes, probably in association with a selector timeout such that if the
channel stays unwritable for an excessive length of time we just give up and close
the channel. (The blocking-mode socket timeout set with ���"��!�����;������
doesn’t help us here: it only affects reads, not writes.)

To write the reply in non-blocking mode, we must revert the channel to non-
blocking mode when we have assembled the complete request as shown
in section 12.3.9, construct the reply as an output >)��>�����, �,�, by wrapping the
byte array of a >)��$��)+����������:

332 ���
���������	������������

ByteArrayOutputStream baos = new ByteArrayOutputStream();
DataOutputStream dos = new DataOutputStream(baos);
dos.writeXXX(…);// etc
dos.flush();
ByteBuffer outputBuffer =
ByteBuffer.wrap(baos.toByteArray());

or putting it to a direct byte buffer:

ByteBuffer outputBuffer =
ByteBuffer.allocateDirect(baos.size());

outputBuffer.put(baos.toByteArray());

and write from the >)��>����� whenever the channel becomes writable:

void writable(SelectionKey key) throws IOException
{
SocketChannelchannel = (SocketChannel)key.channel();
outputBuffer.flip();
int count = channel.write(outputBuffer);
outputBuffer.compact();

// close when finished reading & writing
if (count == 0 && channel.socket().isInputShutdown())
channel.close();

}

If the reply has been completely written to the output buffer before the ������
method returns, the ������>�����!���� and ������>�����!������ operations are
unnecessary; otherwise, operations on the output buffer should be synchro-
nized.

72,8,; /%���
�
�������������

If the conversation consists of more than a simple request and reply, ultimately it
needs to be implemented implicitly or explictly as a state machine whose contin-
uation (next action) can be can be executed by any thread.

72,8,C "���������
�!���������������

If we use blocking mode to read the request or reply, we must avoid blocking
while synchronized on the selected set of selector keys. This means clearing the
original in a different way, and copying the set before processing it:

��������
����������
��� 333

Set readyKeys = null;
synchronized (selector)
{
selector.selectedKeys().clear(); //replaces it.remove()
selector.select();
readyKeys = new HashSet(selector.selectedKeys());

} // drop selector lock

// process local copy of ready keys

Iterator readyKeysIterator = readyKeys.iterator();
while (readyKeysIterator.hasNext())
{
SelectionKey key =
(SelectionKey)readyKeysIterator.next();

// it.remove() not required because of clear() above
if (!key.isValid())
continue;

Handlerhandler = (Handler)key.attachment();
handler.handle(key);

It is unnecessary to synchronize on the copied set because it is local to the thread.

The technique of parallel accepts makes it more likely that the selector will
report false results, as discussed in section 4.5.4, as a thread may receive a ready-
notification about a channel that another thread is concurrently processing.

72,8,D #������������$�����������
���
���$�����������

When we are finished with blocking mode, we must restore non-blocking mode
and re-register the channel with the selector. To do this, we don’t need to cart
around any extra state such as the selector and the interest-set, because we can re-
use the registration data in the cancelled key, which is guaranteed to remain in-
tact after its cancellation:

key.channel().configureBlocking(false);
key.channel().register
(key.selector(), key.interestOps(), key.attachment());

This causes a new registration of the channel with the same selector, using the
same interest-set and attachment, and generating a new ���������/�).

If and when Java supports multiplexing on channels in blocking mode, all this mode-
flipping, cancelling, and re-registering will become unnecessary. This enhancement
was at one time reportedly planned for "�� 1.5 but it didn’t show up.

334 ���
���������	������������

72,8,73 �������

As discussed in section 12.2.10, a server may choose to close the connection after
writing a certain reply. In non-blocking mode, if a reply >)��>����� is constructed
to be written in non-blocking mode, the ������������� must be able to signal
that the channel can be closed after output of the current output buffer is com-
plete. This is just a boolean state maintained in the �������������.

72,8,77 ������$�'��
�
���������

Sometimes the underlying service is inherently single-threaded, or at least
thread-oriented: for example, a database service or a message-oriented host
transaction system. In cases like these it still makes sense to have a number of
threads servicing the network—accepting connections and requests—but we
need another internal queuing system to communicate with the thread(s) that
actually provide the service. To synchronize the activity of these two kinds of
threads there is normally some kind of ���!�������'�
���: a callback which is
executed when the underlying service is complete: this may do something as
simple as setting a boolean ‘reply complete’ state which permits writing from the
reply buffer when the channel is writable.

��.� ��	���
������

There isn’t nearly as much we can do with ��� clients in the area of threads,
connections, and multiplexing. Generally clients of a service are single-threaded,
and only need special design and coding to handle connection failure and receive
timeouts. However there are several techniques which can assist in these areas.

72,9,7 �����������!������

Repeated exchanges with the same server can be made more efficient if the client
arranges to re-use the same ��� connection. This strategy amortizes the connec-
tion and disconnection overheads over the number of exchanges, so that the sec-
ond and subsequent exchanges only require a minimum of three new packets
each, rather than ten as discussed in section 3.2.3.

It also has a benefit at the server end, by reducing the number of new threads
which must be created, leading to a gain in efficiency at the server host. The
server must be written so as to handle multiple requests over a single connection
as described in section 12.2.9; �,�, it must loop reading requests on a connection
until it is closed by the client.

Implementing this is simply a matter of returning connections to a free pool
instead of closing them, and retrieving a free connection to the correct host from
the pool if possible rather than opening a new one. The free pool would therefore
be implemented as a � !����!�� mapping E'������(�!���F.

��������
����������
��� 335

A connection retrieved from the free pool may of course have been closed at
the server end, and should be treated with suspicion, �,�, by using a shorter reply
timeout, or an application-level ‘ping’ protocol to test the connection’s liveness.
Connections in the free pool should expire (by being removed from the free pool
and closed) after a short interval rather than being assumed to live forever.

72,9,2 #�>����$��!�)�����������

Ideally, each request and reply should be sent as one ��� segment: this mini-
mizes network latency and ��� acknowledgment traffic. It can be ensured by us-
ing send and receive buffers at least as large as the largest possible request or
reply, in conjunction with >�������#����,+����������� or >)��>�����s of simi-
lar sizes, as described in section 3.6 and section 3.13. Buffer sizes at the server
should be chosen on the same principle.

When using channel I/O and messages consist of multiple parts, �,�, the com-
monly seen header-body-trailer format, ‘gathering’ channel I/O can be used to
write the parts in one action from multiple >)��>�����s, saving the processor and
memory overheads of concatenating messages in memory, or the network over-
heads of writing them in several distinct actions. When the parts of a message are
of constant length, or at least of lengths known in advance, ‘scattering’ channel
I/O can be used to read them into multiple >)��>�����s, again saving the over-
head of splitting them apart. At the sending end, ‘gathering’ channel I/O can be
used to send the data. This is illustrated in Example 12.13.

// Initialization - common to both ends
static final int HEADER_LENGTH = 16;
static final int BODY_LENGTH = 480;
static final int TRAILER_LENGTH = 16;
ByteBuffer header = ByteBuffer.allocate(HEADER_LENGTH);
ByteBuffer body = ByteBuffer.allocate(BODY_LENGTH);
ByteBuffer trailer = ByteBuffer.allocate(TRAILER_LENGTH);
ByteBuffer[]

buffers = new ByteBuffer[]
{ header, body, trailer };

// sending end - populate the buffers, not shown
long count = channel.write(buffers);
// repeat until all data sent

// receiving end
long count = channel.read(buffers);
// repeat until all data read

45�����
��.�� Scatter-gather I/O

The total efficiency for simple request-reply message exchanges can be further
improved by conserving connections at the client as described in section 12.4.

336 ���
���������	������������

Sun’s implementation of Java RMI uses this strategy: client-side connections are not
closed but returned to a free pool for the given destination, whence they can be removed
when a new connection to the same destination is required; connections are expired
after they have been idle for 15 seconds (or the number of milliseconds given by
���!���!��������!����������;������, if set).

72,9,8 �����!��������������

Where multiple interactions occur with the same server as part of a single overall
transaction and their sequencing is unimportant, it can be more efficient to per-
form them in parallel rather than sequentially. This strategy is seen in Web
browsers, where a page which consists of text plus several images is retrieved by
several connections reading in parallel. In this way some of the connection over-
head is overlapped with real I/O. In a situation like this it may be more natural to
use multiplexed channel I/O at the client rather than a number of blocked
threads.

��. "��
�.
�5�������

The � !����!���������� package introduced in "�� 1.5 contains many built-in
solutions to the design issues of this chapter, which was largely written before
the advent of "�� 1.5:

(a) The 	������� interface and its derivations, which represent objects with the
ability to execute D������!��� methods in series or parallel with the current
thread;

(b) the ;����:���	������� class and its derivations, which provide thread-
pooled implementations of 	��������;

(c) ;����:���	�������.������:����) settings, which correspond to exit strate-
gies in the foregoing discussion;

(d) The ;����C����) interface, which represent objects which can create
threads; and

(e) The 	�������� class, which provides numerous ;����C����) implementa-
tions corresponding more or less with all the possibilities described in this
chapter.

��.� :�����
�����%��	���
����	��������

Recent work by Matt Welsh at Harvard generalizes the thread-management con-
cepts expounded in this chapter to the entire server. ����, or Staged Event-Driven
Architecture, defines a suitable framework for building massive servers based on

��������
����������
��� 337

Java NIO which can handle very large numbers of connections simultaneously.
The processing of each request is broken down and redefined as a ‘pipeline’ of
‘stages’, with each stage having its own dispatcher and thread pool, such that
����) stage of the processing of a request is dispatched into a dynamic thread
pool. All the thread pools are subject to the overall control of a scheduler which
can see the stages of the pipeline that need more resources and the stages that
can get by with less, so that over time the system can self-tune to ensure there are
enough threads where they are needed and not too many where they are not. A
���� server is also capable of adaptive load-shedding.

The design and construction of such a server is quite a feat, introducing espe-
cially all kinds of debugging issues. Matt has defined a Java framework for ����
servers.8 The Apache Cocoon project is capable of being another such frame-
work.9

8. See the ���� home page at ����6,,'''!����!�� ��!���,Z��',����,���,

9. See ����6,,������!����!��
,

339

��������	� ��������������$
	������

(���	,����
��������	��
	�
������� by fallacies and invalid assumptions. A
distributed system cannot be designed and programmed merely by unthinkingly
carrying over assumptions which are valid in non-distributed programming.

However you can’t act on this advice unless you know what the relevant as-
sumptions are! In this Appendix we examine some ‘fallacies of networking’, and
discuss the truth about them.

��.� 4	���
-�����	��
�-
������	��

/��������)�����)���(�	'����'�)�����������
��
���������
�!!�������(�������'�����$
��	�������'������!�����,� ���!��������������������'������������
�����������������$
�����
�!���������������%!��������,

�. 0'�����	��������������.

�. A����)����B���.

�. "�
	�
�'������������.

�. 0'�����	�������������.

 . 0�!����)�
����J���'���.

�. 0'�����������
����������.

!. 0���!������������B���.

&. 0'�����	�������'����������.

These are the celebrated ‘eight fallacies of networking’ of L. Peter Deutsch. Deut-
sch writes:

340 ���
���������	������������

��������!�����'�
��)�R/��'����������������	������S���������)�	'����	������������
������)������A������7DD7T2,�50'��������9�	������������)�
�������
��)����'���"������
-����A)��+���

�
��'����'���9,6� ������������	(��'�����)�!�����'�)��������'��?��
���������6,,� !���!���,������,�
,C������!����(��'������������&���������
����5����6,,� !���!���,������,�
6,J7

The following subsections examine these eight fallacies in more detail.

78,7,7 ����).��'�����	��������������

The network is ���������. Networking software such as ��� gives such a good
!!����� of reliability that it is all too easy to forget that this is merely a well-
sustained illusion implemented by an upper layer of the protocol.

At bottom, a computer data network is a mechanism for switching data pack-
ets. Packets can collide on the underlying medium, in which case one or both
packets are lost. The medium can become saturated, in which case packets are
dropped, either deliberately by active components (hosts and routers), or inevita-
bly by the laws of physics. Hosts, routers, and applications can crash, or be
brought down and up deliberately. Networking software can fail. Cables can be
disconnected, whether by network administrators or backhoes. In some circum-
stances, �,�, saturation, the network is
������
 to fail, in order to protect its own
integrity.

78,7,2 ����).������)����B���

Latency, �,�, waiting time, is the time taken for a packet to traverse the network
between source and destination. Packets cannot move at greater than the speed
of light through a wire. Packets traversing hosts and routers are processed at
speeds limited by the available computing power, and are subject to queuing at
those places. Packets which have been dropped are subject to re-transmission.
Latency in certain networking technologies such as phone modems and x(:?
can be amazingly high. For all these reasons, it cannot be assumed that transmis-
sions arrive instantaneously.

Latency is sometimes measured as the ����
$���!�����, i.e. the total time for a
data packet to be sent and an acknowledging packet to be received.

1. (See his professional home page at ����6,,'''!�����!���,�����,
����,). Deutsch is also
associated with the saying ‘to iterate is human: to recurse, divine’—itself a rather divine
pronouncement—although he doesn’t remember whether it was original or borrowed [personal
correspondence, July 2002].

��������������	������ 341

78,7,8 ����).���
	�
�'������������

Bandwidth, the number of bits (or bytes) that can be transmitted per second, is
finite, and sometimes surprisingly small. Bandwidth is shared among all users
of the network. The total bandwidth of an end-to-end connection is the band-
width of the slowest network segment in the path. Data cannot be transmitted
into a network faster than its bandwidth: this implies queuing at transmitters
and therefore leads to additional latency—see section 13.1.2. The design of any
non-trivial networked application must model current transmission volumes
and future growth against network bandwidth and latency to obtain expected re-
sponse times, and verify these against required response times.

78,7,9 ����).��'�����	�������������

Networks are inherently insecure. Data packets can be ‘sniffed’ by anyone with
physical access to the network, using readily available hardware or software. Net-
works can be made more secure in various ways, �,�, physical isolation, applying
cryptology, and so on.

78,7,4 ����).���!����)�
����J���'���

You cannot assume that the route between two end-points of a communication
will not change, either over long periods or even during the period of the commu-
nication itself. In the short term, the network may change routes automatically
several times during a connection: ��� # 	� was specifically designed to allow dy-
namic routing, in order to provide fail-safe multi-path operation and to allow au-
tomatic detection of optimum paths. In the long term, if your application is any
good, it must survive several major network configurations.

78,7,: ����).��'�����������
����������

There may be zero or more network administrators. There may be more of them
than you can ever discover. They may be responsible to zero or more different
organizations, both internal and external. The greater their number, the more
unlikely it is that you can obtain a uniform response from them. One or more of
the administrators or organizations may be indifferent or actively hostile to your
purposes. You cannot assume without proof that installation or operation of your
application will be straightforward ��������!������� if it requires cooperation from
network administrators.

78,7,; ����).�����!������������B���

The transport cost between two computers, even when you own both of them and
all the cabling and components in between, is not zero: consider the cost of elec-
trical power, service contracts, amortization, and depreciation. If the network is

342 ���
���������	������������

heavily used you may also have to consider opportunity costs. The transport cost
within an organizational ��� may not be zero, as it may be subjected to an inter-
nal usage charge. The transport cost in a network involving a third party is most
unlikely to be zero and may be rather high. Third-party costs are likely but not
certain to consist of a fixed rental component plus a variable usage component
per megabyte of data received or transmitted or both. The design of any non-
trivial networked application should include a costing model for network compo-
nents and data transmission.

78,7,C ����).��'�����	�������'����������

The network path between any two end-points may consist of ���, a ��� seg-
ment; an x��� segment; a � � line; a gigabyte segment; a 56Kbps modem; and
another ��� . As remarked in section 13.1.3, the total bandwidth of this path is
56Kbps, the bandwidth of its slowest segment. You may not know about the ex-
istence of the slowest link. The slowest link may appear after the deployment of
your software, or it may
��appear. As we said above, if your application is any
good it will survive several network configurations.

��.� 9������
-�����	��

Here are some ‘further fallacies of networking’ of my own—I was going to say
‘my own invention’ but what I really mean is ‘my own, painful, discovery’.

78,2,7 ����).����	����������������
�������

The network I/O API in most operating systems and class libraries is usually very
like, or indeed identical to, the disk I/O API.2 The similarity ends there. The net-
work is not at all like a disk. It is a mixture of hardware and software whose com-
bined probability of failure is many orders of magnitude larger than that of a disk
device. Its behaviour is far less predicable than that of a disk device. In particular,
its timing is ���!�����!�� highly unpredictable, even within wide limits, once appli-
cation components are included.

By contrast, disk I/O is highly reliable and predictable. The mean time be-
tween failure for disks is measured in years, not seconds, and the maximum time
for an I/O transfer is bounded by seek time and transfer rate, so it is customary
for an entire disk I/O request to be serviced before the API returns. Implement-
ing network APIs to work the same way would not be reasonable, and using those
APIs as though they were disk APIs is not reasonable either.

2. This is certainly true in Java: the � !��![classes use the same API for files and ���"���� and
equally so do the � !���!�������![classes.

��������������	������ 343

In contrast, you don’t always get all the data you asked for when reading from a
network. This is probably the single most common network programming error,
and it is seen daily in programming forums and newsgroups all over the Inter-
net. Depending on the networking API;
 its current mode of operation, and the
network protocol being used, you may get any of:

(a) Nothing

(b) One or more bytes

(c) The current contents of the receive buffer

(d) The next data packet received

(e) The requested data length modulo 512, 534, 4096, 8192, 32768, 53248,
65536, or some other familiar or strange number

(f) An end-of-file indication

(g) An error or exception

(h) Everything you asked for.

This is a lot of possibilities: you must program defensively so as to cope correctly
with all of them. Case (b) is the most usual in ���, and case (h) is just as excep-
tional as all the others.

These remarks also apply to 	������ to the network. In some APIs you can’t
assume that the write method wrote all the data: you have to check a return value
which tells you how much was written, and react accordingly. Depending on the
API, its current mode of operation, and the underlying protocol, this result may
be any of the above except the end-of-file indication, reading ‘send’ for ‘receive’
and so forth throughout.

These remarks also apply to setting the sizes of socket send and receive buff-
ers. You can’t assume that you got exactly the size you specified. You may have
been given more: you may have been given less. Getting more is normally unim-
portant; getting less can be significant, �,�, if you know the maximum transaction
size and you’re trying to ensure that transactions are sent in a single ��� seg-
ment.

78,2,2 ����).�)�������)��'����B�
�	��'�)����!���

In general, the only synchronization that occurs between distributed compo-
nents of a networked application is the synchronization you provide in your ap-
plication protocol. You can only assume that the other end has received your data
if you build explicit acknowledgements into your application protocol.

For example, when a network write API returns, the data written hasn’t neces-
sarily been received by the target application, or by the target computer. The data
may not even have left the source computer: the write operation may only buffer
data for later transmission.

344 ���
���������	������������

Similarly, closing a ��� socket only queues a close message for transmission
after all pending data. When the close API returns, the close message hasn’t nec-
essarily even left the source computer. You can’t assume that the other end has
received the close. You �������) can’t assume that the other end has executed a
close API of its own: these are not interlocked. In fact, by the previous paragraph,
you can’t even assume that the other end has finished reading data yet.

78,2,8 ����).������������������
������

One of the peculiarities of ��� # 	� as against earlier protocols like ��� and 	�5
is that a network path can fail in ways which cannot be detected by one or both
ends.

As we saw in section 13.2.2, socket writes are asynchronous, so an application
which writes data to a connection which subsequently breaks cannot possibly be
informed about the failure until it executes another network operation. Recover-
ing synchronization in this case is once again the responsibility of the application
protocol.

Similarly, it is possible for an end-point or the network to fail in such a way as
to cause an application blocked in a socket read to stall forever. A non-trivial ap-
plication should never block on a network read without setting a finite read time-
out interval, and it must have a strategy for dealing with timeouts.

78,2,9 ����).�����������������������)�������

Network resources such as buffers and ports are finite. You will run out. Don’t
pre-allocate them statically if you can have the system allocate them dynamically,
and don’t just assume that you got what you asked for: see section 13.2.1.

The network cannot contain an infinite amount of data. I have recently de-
bugged an application protocol which was stalling. Its design implicitly assumed
that an arbitrary (�,�, infinite) amount of data could be written by both ends before
either end executed a read. It’s not that the application designer actually thought
all this data could fit somewhere: he didn’t think about the issue at all, because he
didn’t realize he was designing a network protocol.

78,2,4 ����).�!!������������	������������������������������

No: there is almost always a time beyond which it is pointless to continue wait-
ing. Patience is not and should not be infinite, in networking as in life. The de-
sign of any non-trivial application requires careful attention to expected service
times, reasonable timeout periods, and behaviour when timeouts occur.

78,2,: ����).�����������������������
���
����������)������

No, they aren’t. Networking implies packet switching, which implies queuing,
which implies waiting. When loads get very heavy, waiting times increase

��������������	������ 345

enormously—see Figure 12.2. Also, remote services are by definition remote,
and often the only way you can observe them is via the network, often only via the
very application protocol you are trying to exercise, so it can be difficult to dis-
cover their status under heavy load—which, of course, is the only time you want
to discover its status!

78,2,; ����).��'���������������!��������������

No, there isn’t. A distributed system usually doesn’t have a single point of failure.
It is not a single system: it doesn’t crash all at once. It often ����� be stopped all
at once even if desired. A distributed system is not like multiple threads running
in a single process, where a failure may stop the whole process, or the process as
a whole can deliberately exit, or be externally terminated relatively easily. It’s not
like multiple processes running in a single processor either, where a failure may
stop the whole processor, or the processor can be brought down more or less
easily. The elements of a distributed system are very loosely coupled indeed, and
a failure in one of them is unlikely to bring down the whole system: indeed, the
network as a whole is
������
 to survive isolated failures.

78,2,C ����).��'�������������������������������

No, there isn’t. Each host allocates its own resources. One component of a dis-
tributed system may get everything it asked for; another component may get
enough of what it wants to at least function partially, or in a degraded mode of
operation; and another component may be unable to function at all.

78,2,D ����).��'�������������������

Not in a distributed system there isn’t. There are multiple clocks running, cer-
tainly with minor if not major disagreements between them, and possibly at
slightly different rates. The existence of network time servers and distributed
time protocols alleviates but does not eliminate this problem. System clocks may
be set to the wrong time, accidentally or deliberately, and for reasons legitimate
or otherwise. There are such things as timezones: if your system has enough ge-
ographical spread some of its nodes will be in different time zones, and of course
this is the
����� case over the Internet.

��.� ��
�������	��

Network programming is lots of fun, and very interesting indeed, but it is not the
same as the sequential programming usually taught in Computer Science 101.
Don’t try to force it into this mould.

Part VI

Appendices

349

�������� � tcp �!���������

The current state of a ��� port can be displayed with the �������$K�L command.
This very useful command observes the existence and state of ��� and ��� ports,
and can be used to watch the behaviour of clients and servers from the outside.

The various states of a ��� port are defined in �-� 793. Table A.1 shows the
name, �-� 793 definition, and Java meaning of each port state. The port states are
listed in the order in which they normally occur over the lifetime of a port.

��,��
+.� ��� port states

���� �-��012�!��		�	� ���	��	�3�)�

� 	 ���� #�!��������	�����������
�������������>����������
�)��������tc p ��
�
!���,

Corresponds to a bound ��� �����"��.a

�0�% ���� #�!��������	�����������
���'���������������
��>����������'�����
�����������������
��>����,

Corresponds to a client ���"�� which
has implicitly or explicitly executed
���"��!������� but whose ������������
state is still ����. If the matching
connection request is received from
the server, the socket’s �����������
state becomes true and the port state
changes to ����,�	 ���� ; otherwise
the client’s connection request
eventually fails.

350 ���
���������	������������

�0� %����	��� #�!��������	�����������
����������������������
��>�����
����	��
�����������
'��������'��������
�
�
������������������
��>����,

Corresponds to an incoming
connection being constructed on a
��� �����"��’s backlog queue. Once
the desired acknowledgement has
been received from the client, a
corresponding server-side ���"�� can
be constructed and returned by a
future ��� �����"��!�����.b

����,�	 ���� #�!�����������!���
����������(�
��
�������
�������

�������
�����'������,�
0'������������������'��

����������!'������
�'������������,

Corresponds to a connected ���"�� in
a client or server. In this state, the
S��"��’s ����������� and ��+���
states are ����, and its
��+�����������'� state is ����.

-	� %�	� % � #�!��������	�����������
����������������������
��>�����������'���������
t cp (������
����	��
����������'��
����������������������
��>�����!��������)�����,

Corresponds to a ���"�� which has
been closedc by the local application,
but the close has not been
acknowledged by the remote ���.b

-	� %�	� %� #�!��������	�����������
����������������������
��>�����������'���������
t cp ,

Corresponds to a ���"�� which has
been closedc by the local application;
the close has been acknowledged by
the remote ���; but the remote
application has not yet issued a close.
This state persists as long as the
remote application chooses to keep its
end of the socket open.

����� %�	� #�!��������	�����������
����������������������
��>�����������'�������
����,

Corresponds to a ���"�� which has
been closedc by the remote application
but not by the local application. This
state corresponds to - 	� %�	� % � or
- 	� %�	� %� at the other end; it
persists as long as the local application
chooses to keep the socket open.

���� 	�� #�!��������	�����������
����������������������
��>�����
����	��
�����������
�'���������t cp ,

Corresponds to a ���"�� which has
been closedc by both the local
application and the remote application
(simultaneous close) but the local close
has not yet acknowledged by the
remote ���.b

��,��
+.� ��� port states (continued)

���� �-��012�!��		�	� ���	��	�3�)�

tc p �!��������� 351

���� % ��� #�!��������	����������
������	��
���������
�'�������������
�������������>�����
!��������)����������'��
�������tc p �5	'��'�
�����
�����
����	��
�������������
����������������������
��>����6,

Corresponds to a ���"�� which has
been closedc by both the local
application and the remote application
(simultaneous close); the remote close
has been acknowledged by the local
���, but the local close has not yet
acknowledged by the remote ���.b

� 	�� %�	� #�!��������	����������
�����'���������!������
���������'���������tc p �
�������
��'��
����	��
�������������
����������������������
��>����,

Corresponds to a Socket which has
been closedc by both the local and
remote applications and all
acknowledgements exchanged; the
port persists for a few minutes at both
ends so that any further delayed
packets for the connection can expire.

������ #�!�����������
��������������������,

This state is ������). It corresponds
to the port being non-existent, and so
is never displayed. It is used as the
starting and ending point of state
diagrams and state machines.

a. In Microsoft Windows versions before Windows Server 2003, for every ����,� 	 ���� client
port the ������ command incorrectly reports an additional non-existent � 	 � ��� port with the
same port number. See�����6,,�������!���������!���,������!���\����1"�4��<��4QQ2�=M.
b. This state is transient and short-lived, depending mainly on network delay.
c. In ��� port states, and throughout this table, ‘closed’ means that ���'�� ���"��!����� or�
���"��!������'�+����� has been called: i.e. the ���"��’s �������� or ��+�����������'� state is
����. If a socket which has been shutdown for output is kept open for long enough after the shut-
down and after the other end closes its end of the connection, the corresponding local port will
eventually reach the ������ state and disappear from the �������$ output, even though the local
socket is still open.

��,��
+.� ��� port states (continued)

���� �-��012�!��		�	� ���	��	�3�)�

353

�������� � ��������
�!��
������

A research report into implementations of ��� # 	� has appeared which enumer-
ates very precisely some of the variations between FreeBSD, Windows XP, and
Linux. The report shows that it is possible to derive a formal specification for the
actual behaviour of ��� # 	� in higher-order logic (HOL),1 and it contains such a
specification covering ��� # 	� on these three platforms only, and apparently
without examining the behaviour at the peer when certain conditions arise
within a platform, some of which have already been described in the present
book and are summarized in Table B.1 below. Even within these constraints, the
researchers found ‘around 260’ differences between these platforms.

This is rather a startling number of platform dependencies. Fortunately most
of them don’t affect network programming in Java, either because they concern
internals or because they are ��	 issues that either don’t arise by design in Java2

or have been engineered away in the "�� implementation.

Table B.1 summarises the platform differences that can be encountered by a
Java program using the Java classes described in this book.3

1. Bishop ����, #�������� �!������������
� ����������� �������� ���'��>���� �������	����!��������(��
!!���
� ��� ��� (� ��� (� �
� �������(�University of Cambridge Computer Laboratory & �	���,
Canberra, 2005, ����6,,'''!��!��!�!�",����,���7�,&�����,�����!����

2. The most interesting ��	 issue is that in FreeBSD you can shutdown datagram sockets and
listening sockets, with consequences which are entirely plausible in each case. Another curiosity
exposed by this paper is that, in both ,�� Sockets and 	�����; you can call ������56 again on a
listening socket to alter the backlog value: this is not reflected in the Java ��	.
3. All numbers quoted in this table are either from the paper cited above or the present book
!����(in which case the ultimate source is W.R. Stevens, either ��� � �� � ���������
 or ���%
���	��������������. All numbers for Linux in this table apply to version 2.4.20.8.

354 ���
���������	������������

��,��
8.� Platform dependencies affecting Java ��� # 	�

���������	
� $���� #������

��
�����"��
!����

Maximum size of a
datagram: 65507 in the
��� protocol �-�F
bounded by the socket
send buffer size

Linux: 9216 bytes.a

��� �����"��
!����

Length of default backlog
queue; adjustment to
application-supplied value

Originally 5; seems to be at
least 50 on most current
platforms; varies between
workstation and server
versions of Windows.

���"��
!����� and
���"��������
!�����
after calling
���"��
!��������
��

If timeout is set and
expires,
whether unsent data is
still sent or the connection
is reset

Unix-based platforms leave
unsent data queued for
transmission; Windows resets
the connection.

On Linux, if a positive linger
timeout is set,
���"��������!����� blocks
even if the channel is non-
blocking.

���"��
!�������

Behaviour if the target
backlog queue is full

Unix-based platforms ignore
the connect request, so the
client times out and retries
within �������.

Windows: issues a reset, so
Windows clients therefore also
retry within ������� on
receiving a reset. This is not
the intent of the �-�.

���"��
!
��D���� �>�������?�

���"��
!
������>�������?�

Default size of socket
buffers

Originally 2k.

Up to 56k on various Unix-
based platforms:

FreeBSD: send=32k,
receive=56k.
Linux: send=16k,
receive=43689 bytes (!).
Solaris 52k.

Windows: 8k.a

��������
�!��
������ 355

���"��
!���/����� �

Whether supported by the
platform; keep-alive
interval

Can be detected by checking
���"��!
��/����� � after
calling ���/����� �.

Keep-alive interval is normally
2 hours globally and if
changeable requires privilege
to change.

���"��
!���D���� �>�������?�

���"��
!�������>�������?�

Adjustment to
application-supplied
values

Will be adjusted to fit the
platform’s maxima and
minima (see below), and may
be rounded up or down to suit
the platform’s buffer-size
granularity as well.

���"��
!���D���� �>�������?�

���"��
!�������>�������?�

Maximum size of socket
buffers

FreeBSD: depends on various
kernel constants.

Linux: 131070 bytes.a

Windows: 131070 bytes.a

���"��
!���D���� �>�������?�

���"��
!�������>�������?�

Minimum size of socket
buffers

FreeBSD: 1 byte.

Linux: send=2048,
receive=256 bytes.

Windows: zero (!).

���"��
!��������
��

Maximum linger timeout

value, nominally
seconds in Java
specification

Some platforms limit it

to sec
onds, by using an internal 16-
bit signed quantity
representing hundredths of a
second.

���"��
!������'�#����

Whether
���������/�)!+:9D	$� is
selected for such a socket

FreeBSD: yes

Linux: yes

Windows: no.b

��,��
8.� Platform dependencies affecting Java ��� # 	� (continued)

���������	
� $���� #������

2
31

1– 2
15

1–() 100⁄ 32.767=

356 ���
���������	������������

���"��
!������'�#����
at receiver

all '����, '����LLL
methods at sender

Behaviour as seen by
remote sender

Most Unix-based platforms
accept and ignore the data, so
the sender’s writes all succeed.

Windows sends an ���, so the
sender incurs a
���"��	�������� ‘connection
reset by peer’

Linux accepts and buffers the
data but cannot transmit it to
the local application, so the
sender eventually gets blocked
in write, or is returned zero
from non-blocking writes.

���"��
!������'�+�����

Whether
���������/�)!+:9KD#;	 is
selected for such a socket

FreeBSD: no

Linux: no

Windows: yes.b

a. This is too small for modern Ethernets or high-latency links such as DSL or ADSL. Socket buff-
ers should be at least equal to the bandwidth-delay product for the intervening network: at least 16k
on a 10Mb LAN, more like 63k on 100Mb ���s or links with high latency, or a multiple of 64k
when window-scaling can be used.
b. Note the inconsistency of all platforms as between their behaviour for
������'�#����,+:9D	$� and ������'�+�����,+:9KD#;	.

��,��
8.� Platform dependencies affecting Java ��� # 	� (continued)

���������	
� $���� #������

357

�������� � #���������

Baker, F., �-� 1812, #�>��������������ip�=�������9�#������(June 1995.
Bishop ����,(�#���������!������������
�����������������������'��>�����������	����
!��������(���!!���
����tcp, udp, �
��������(University of Cambridge Compu-
ter Laboratory & NICTA, Canberra, 2005.

Braden, R., �-� 1122, #�>�����������������������G����<�������������A)���(
October 1989.

Bug Parade, ����6,,�� ������!� !���!���,�� ������,��
:���
Chan, Lee, & Kramer, 0'����������A�������(�2nd Edition, Addison Wesley

1998.
Comer, D.E., and Lin, J.C., 0���"����������
�������������������atm ���	���(�

Technical Report CSD-TR 94-026, Purdue University, West Lafayette, Indi-
ana, ���6,,
'��!��!������!���,���,���,;�:!��!��!I!

Dierks & Allen, �-�
���� ; 0'��tls���������(�=�������7,3(�January 1999.
Finlayson, R., �-� 2771, �� ������� ����������������

����� ��������(Febru-

ary 2000.
Frier, Karlton, & Kocher, 0'��ssl�8,3���������(�Netscape Communications Corp.,

Nov 18, 1996.
Gamma ����,(�-�������������.�/�����������#���������*���$�������
�����	��(Add-

ison-Wesley, 1995.
Gunther, N. 0'��������������������� ��)��(McGraw-Hill, 1998.
Handley, M., ����,(�-� 2887, 0'��#����������������-�������!�������"����-��
0������(August 2000.

Hanna ����,(��-� 2730, madcap<���������

�����
)���������������������!��$
�����(December 1999.

Hardjono and Dondeti, ����������
�&���!��������)(Artech House, 2003
Hickman & Kipp, 0'��ssl���������(Netscape Communications Corp., Feb 9,

1995.
Hinden ����,(��-� 2732 ����������A���������:�

�����������#AJ�(December

1999.

358 ���
���������	������������

Hinden, R. & Deering, S., �-� 2373, ���=�������:�

�������� ��'��������(July
1998.

IEEE, ����%�7338,7����
�
����������������0��'�����) ���������!��������)�����
��������(�"���-����������(�������:(�-��������2337,

� <�������) mailing list.
Kabat ����,(�-� 2853, &��������������)��������� ���=�������2.����"��
����(June

2000.
Lea, Doug, ���������������������������, 2nd edition, Addison Wesley 2000.
Lea, Doug, ����������������(lecture slides,

����6,,
��!��!��'�
�!���,��,���������,���!���!
Linn, J., �-� 2743, &��������������)��������� !!������������������������=�������
2(��!
���7(January 2000.

Martine, R. "����0������ ��)���(Prentice-Hall, 1993.
Meyer, D., �-� 2365,
������������)����!�
������������(July 1998.
Papadopolous, C., & Parulkar, G.M., /%!���������/���������������������
�
0������!����������!����������(�IEEE/ACM Transactions on Networking, Vol.
1, no. 2, 1993.

Piscitello, D.M. & Chapin, A.L., �!����)���������	������.�����1�0�����(Addi-
son-Wesley, 1993.

Pitt, E.J. & McNiff, K., *�,���.�0'��#���������'�
�����������&��
�(Addison-
Wesley, 2001.

Postel, J., �-� 768, �����-�������������(August 1980.
Postel, J., �-� 791, �����������������(September 1981.
Postel, J., �-� 793, 0���������������������������(September 1981.
Rescorla, Eric, � �� �
���� , Addison Wesley, 2001.
Reynolds & Postel, �-� 1700, ������
��������, October 1994.
Schmidt ����,(�������$�������
�����	��� ��'��������(�=���2.�������������������$
������
����	����
���*����, Wiley, 2000.

Schneier & Wagner, ��)��������'����A�8,3���������(Second USENIX Workshop
on Electronic Commerce Proceedings, Usenix Press, 1996.

Schneier, !!���
���)������!')(Wiley, 1996.
Schneier, ���������
�A���(Wiley, 2000.
Senie, D., �-� 2644, �'�������'��-����������-������
�"��
��������#������,
Singh, Simon, 0'����
��"���(Fourth Estate Ltd, 1999.
� �� Talk List -�= , available at ����6,,'''!�H�!��
,�H�,��������<�������),���<

��"<�H,.
Stallings, W., P�������� ��)���(�2000, lecture notes, via

����6,,K�����������
�!���,��������������!����!
Stevens, W.R., 0���������������
�=�������(�Addison-Wesley, 1994.
Stevens, W.R., ���%����	��������������(2nd edition, Prentice Hall ��� , 1998.
Tanenbaum, ���!��������	����(�3rd edition, Prentice Hall, 1996.
Tanner, M., ��������P�������� ��)���(McGraw-Hill, 1995.
Van Jacobson, ����������� ���
�����
��������(�Computer Communications

Review, vol. 18. no. 4, pp. 314–329, Proceedings of the ACM SIGCOMM ’88
Workshop, August, 1988.

359

��������$��
�%

This is a complete cross-index of Java packages, classes, and members men-
tioned in the text. First-level entries are present for classes and members, as fol-
lows:

A class entry has subentries for its package, its direct descendants (�%���
�
��)
or ��!�������
��)), and its �������. The entry also cross-references each use of
the class by this or other indexed classes, wherever !���
� ��, �������
� �), or
�'��	���) a method.

Java packages are not indexed.
A member (method or field) entry has subentries for the class(es) in which

such a method or field is declared.

A
�������

in � !���!��� �����"�� 28, 31, 55
in � !���!�������!��� �����"�������� 118

��������	����
����������������, in � �!���!
���!������"�� 149

�����	�
�
����
��������
�
in � !��

thrown 78
�����	��, in � !���!�������!���������/�) 103
�����	������, in � !���!�������!���������/�)

103
���
��
��, parameter to � �!���!���!

������"��C����)!��������"�� 146
�����������, in � !��!#��������� 41

B
������

in � !���!��
�����"�� 231
in � !���!��� �����"�� 31

����������
�
in � !���

thrown 52, 238
������

in � !���
�������.

�����) 86
���� 86
���� 86
��D������
 86
����� 86
�������� 86
�������
 86
����� 86
��'��� 86

�������
��).
� !���!>�����!����� 86
� !���!>�����!��" 86
� !���!>�����!�������� 86
� !���!>�����!����� 86

�� �!"#$�! �#%, in � �!���!���!
���	�
���D�����!����� 189

�� �!"�&'�! �#%, in � �!���!���!
���	�
���D�����!����� 189

360 ���
���������	������������

��������(���)�����
in � !��
���� 41–42

��������#����)�����
in � !��
���� 39, 58, 84–85, 147

���������#����)�����
in � !��
���� 227–228

����������
in � !���
!���
���.

� !���!�������!��
��������!
��� 262

� !���!�������!��
��������!
����� � 263

� !���!�������!��
��������!
���� 263

� !���!�������!��
��������!
'���� 263

� !���!�������!*������
>)��������!
'���� 77

� !���!�������!D�����>)��������!
��� 77

� !���!�������!��������
>)��������!
��� 77

� !���!�������!K������>)��������!
'���� 77

� �!���!���!���	�
���!��'�� 187
� �!���!���!���	�
���!'�� 187

�����	�����
in � !���!�������
���� 76–77

C
��������, in � !���!�������!���������/�) 103
���������, in � !���!>����� 86
�����������

in � !�������)!����
�������
��).

� !���!���!B����"����������	 ���!

����������������� 149

� !���!���!B����"����������	 ���!

��:�������������� 150

� !���!���!����������!

����������������� 156

� !���!���!����������!

��:�������������� 156

�	�����
in � !���!�������
���� 76–77
�%���
�
��).

� !���!�������!#������������������
78

� !���!�������!D����������� 77
� !���!�������!��������������� 101

�������.
����� 76
��+��� 76

�	�������, in � !���!�������!���������/�) 103

�	������
in � !���!�������
�������.

��'������ 79
��'#��������� 79
��'+���������� 79

�������, in � !���!>����� 86
��
����

in � !���!��
�����"�� 236
in � !���!��� �����"�� 48
in � !���!���"�� 47, 63
in � !���!�������!������ 76
in � !���!�������!��
�������� 262
in � !���!�������!#������������������ 78
in � !���!�������!���"�������� 122

��#)�', in � �!���!���!���	�
���D�����!
����� 189

��
�����(�������������
�
in � !��

thrown 78
��
��(��
�����, in � �!���!���!���	�
��� 188
��
��#���
�����, in � �!���!���!���	�
��� 188
�
���*�����
����*��, in � !���!�������!

��
�������� 264
�
�������

in � !���!��
�����"�� 232
in � !���!���"�� 32
in � !���!�������!��
�������� 262

�
�����������
�
in � !���

thrown 52
in � !���

thrown 52
������)�����)
������

in � !���!��� ��!D�#��� �����"��C����) 50
in � !���!��� ��!D�#���"��C����) 50
in � �!���!��� �����"��C����) 143

������)
������
in � !���!��� ��!D�#���������"��C����) 50
in � !���!��� ��!D�#���"��C����) 50
in � �!���!���"��C����) 143

������))���*�����, in � �!���!���!����������
187

D
'���*����	�����

in � !���!�������
���� 100, 261, 263
�������.

����� 262
�����
���>���"��
 264
������� 262
���������� 262
��>���"��
 264
����������� 262
��+��� 262
���� 261
��� 262
����� � 263
���� 263

��������$��
�% 361

'���� 263
�������
��).

� !��!�������!��
��������!
���� 261

'���*���+�����
in � !���
���� 217, 225–226
�������.

��$������ 228

���� 227

�����
�� 227

��+����� 227

��:��� 228

�����"��$������ 228
���$������ 228
����� 227
������
�� 227
���+����� 227
���:��� 228
������"��$������ 228

'���*���)
����
in � !��� 240
���� 217, 224, 229, 278, 283
�������.

���� 231
����� 236
������� 232

������:��� 229

��D���� �>�������?� 240

��D����$������ 230

������>�������?� 241

����;������ 240

��;��������� 243
��>���� 231
�������� 236
����������� 232
����� � 233
���� 233–234
���D���� �>�������?� 240
���D����$������ 230
�������>�������?� 241
�����;������ 240
���;��������� 243

'���(���
in � !��
���� 80
�������.

���C���) 41
'���(���)�����

in � !��
���� 41–42
�������.

������ 41
��������� 41
���C��� 41
���C���) 41
���#�� 41
������
 41
�������� 41
���E;C 41

'���#����
in � !��

���� 80
'���#����)�����

in � !��
���� 39, 227

����
�������, in � !���!�������!
��
�������� 262

E
�# ������
�

in � !��
thrown 43, 46

�,������, in � !���!��� ��!
D�#���������"��C����) 51

�������������
in � !����
�%���
�
��).

� �!���!���!
B����"������������������ 149

������
�
in � !����!����������
���� 336

������
��
in � !����!����������
���� 336

F
 ����	�����

in � !���!�������
�������
��).

� !��!C���#���������!
�������� 78
� !��!C���+����������!
�������� 78
� !��!D����$�����C���!
��������

78
 ���(���)�����

in � !��
���� 78
�������.

�������� 78
 ���#����)�����

in � !��
���� 78
�������.

�������� 78
 (&()��', in � �!���!���!���	�
���D�����!

B����"������ 189
�����, in � !���!>����� 86

G
-��	����*�����	�����

in � !���!�������
���� 76–77
�������.

'���� 77
*�����������, in � !���!��
��:�"�� 228
*���	�������

in � !��!C���#��������� 78

362 ���
���������	������������

in � !��!C���+���������� 78
in � !��!D����$�����C��� 78

*����	��)������
in � �!���!���!B����"����������	 ���

149
in � �!���!���!���������� 156

*��������)����
��
�������, in � �!���!���!
���������� 166

*��������
�.�����, in � �!���!���!����������
156

*��'�����, in � !���!��
��:�"�� 227
*��'��������

in � �!���!��� �����"��C����) 143
in � �!���!���"��C����) 143
in � �!���!���!������ �����"��C����) 144
in � �!���!���!������"��C����) 144

*��'��������	��)�������
in � �!���!���!������ �����"��C����) 152
in � �!���!���!������"��C����) 152

*��'������ ���
����, in � !���!��� ��!
D�#���"��C����) 50

*�����������	��)�������
in � �!���!���!������ �����"�� 153
in � �!���!���!������"�� 153

*���������+�
�
�
����
in � �!���!���!������ �����"�� 154
in � �!���!���!������"�� 154

*��������)����
�������
���
in � �!���!���!������ �����"�� 155
in � �!���!���!������"�� 155

*�������	���)�������
in � �!���!���!���	�
��� 191
in � �!���!���!���	�
���D����� 189

*��('��, in � �!���!���!���������� 156
*��(������������

in � !���!��� �����"�� 29–30
in � !���!���"�� 33

*��(��������������, in � !��� .
NetworkInterface 13

*��(���)�������, in � !���!���"�� 41
*��(���������, in � �!���!���!���������� 166
*��(����������, in � !���!�����������"�� 288
*��������������.�����, in � �!���!���!

���������� 156
������	��, in � !���!��
��:�"�� 227
*���
������������, in � !���!���"�� 34, 37
*���
�����������������

in � �!���!���!B����"����������	 ���
149

in � �!���!���!���������� 156
*���
���+
����

in � !���!��
�����"�� 229
in � !���!��� �����"�� 27
in � !���!���"�� 28, 34

*���
���)
�������������
in � !���!��� �����"�� 29
in � !���!���"�� 37

*���

����/
����, in � !���!
�����������"�� 286

*��&������������	��
in � �!���!���!������ �����"�� 152
in � �!���!���!������"�� 152

*��&��0
��(����������, in � !���!
�����������"�� 289

*��&��0
��(�����������, in � !��� .
NetworkInterface 13

*��#�������, in � !���!��
��:�"�� 227
*��##�(�������, in � !���!���"�� 65
*��#����)�������, in � !���!���"�� 38
*��+���������������	�����

in � �!���!���!B����"����������	 ���
150

in � �!���!���!���������� 156
*��+�����������������

in � �!���!���!B����"����������	 ���
150

in � �!���!���!���������� 156
*��+����
����, in � �!���!���!���������� 156
*��+���+
����, in � �!���!���!���������� 156
*��+���+���������

in � �!���!���!B����"����������	 ���
150

in � �!���!���!���������� 156
*��+
����

in � !���!��
��:�"�� 228
in � !���!���"�� 33

*��+�
�
�
���
in � �!���!���!���������� 166
in � �!���!���!���������� 156

*��!������������)�1���
in � !���!��
�����"�� 240
in � !���!��� �����"�� 56
in � !���!���"�� 35, 56

*��!�������������
in � !���!��
�����"�� 230
in � !���!��� �����"�� 30
in � !���!���"�� 36

*��)���������)�1���
in � !���!��
�����"�� 241
in � !���!���"�� 56

*��)�����)����
��
�������, in � �!���!���!
���������� 166

*��)�����)
���� ���
����, in � �!���!���!
���������� 166

*��)����
���, in � �!���!���!
B����"����������	 ��� 150

*��)����
��
�������, in � �!���!���!
���������� 156, 160

*��)
������, in � �!���!���!
B����"����������	 ��� 150

*��)
�������������, in � !���!
��
��:�"�� 228

*��)
���� ���
����, in � �!���!���!����������
166

*��)
���*����, in � !���!���"�� 61
*��)
.���
����

in � !���!��
�����"�� 240
in � !���!���"�� 54–55

*��)
������, in � �!���!���!
B����"����������	 ��� 150

*��)�������, in � �!���!���!���	�
���D�����
189

*��)�
������	��)�������
in � �!���!���!������ �����"�� 152–153

��������$��
�% 363

in � �!���!���!������ �����"��C����) 152–
153

in � �!���!���!������"�� 152–153
in � �!���!���!������"��C����) 152–153

*��)�
����+�
�
�
����
in � �!���!���!������ �����"�� 154
in � �!���!���!������"�� 154

*��.�&
'������, in � !���!���"�� 60
*��.���.
������, in � !���!�����������"��

282
*��.�������������

in � !���!��
�����"�� 243
in � !���!���"�� 66

*�����������/
����
in � �!���!���!������ �����"�� 151
in � �!���!���!������"�� 151

*��$������, in � �!���!���!���������� 156–157
*��$����&�����, in � �!���!���!����������

156–157
*��%������������	��

in � �!���!���!������ �����"�� 152
in � �!���!���!������"�� 152

H
	����	����
��������, in � �!���!���!

B����"������������������ 149
�����	����
�����������

in � �!���!���
���� 149
�������.

������������� 149

����������������� 149

��:����������������� 150

��:�������������� 150

��������� 150

�����"�� 150

�������� 150

!���
���.
� �!���!���!

B����"������������������ 149
�����	����
��������������

in � �!���!���
���� 149–150
�������.

�����"���������� 149
�����	���)�����

in � �!���!���!���	�
���D�����
���� 189–190
�������.

C#&#�B	� 189
&		�9;$�/ 189
&		�9E&KD$: 189
&		�9KD$: 189
&+;9B$&��B$/#&* 189

	��!�������*��, in � !���!>����� 86

I
(���*����*�����������
�

in � !��

thrown 52, 238

(���*����
����*/
��������
�
in � !���!�������

thrown 52, 80, 238
(����#��#��
����������
�

in � !��

thrown 84–85

(���2�������
in � !���
���� 11

(���3�������
in � !���
���� 11
�������.

��#�(����������$������ 12
(����������

in � !���
���� 11, 29, 32
�������.

��>)$������ 32

��>)&�� 32
��$�)����$������ 12
�����"����$������ 12
��������" 12
����*���� 12
�������"���� 12
����&������� 13
����+�
���� 13
������������ 13
����������$������ 13
���������� 13

!���
���.
� !���!��
��:�"��!

��
��:�"�� 226
� !���!��
��:�"��!���$������

228
� !���!��
�����"��!

��
�����"�� 229
� !���!�����������"��!����*���� 284
� !���!�����������"��!�� �*����

284
� !���!�����������"��!���#�������

288
� !���!��� �����"��!��� �����"�� 27
� !���!���"��!���"�� 32
� �!���!��� �����"��C����)!

�������� �����"�� 143
� �!���!���"��C����)!��������"�� 143

�������
��).
� !���!��
��:�"��!
��$������

228
� !���!�����������"��!
��#�������

288
� !���!���"��!
��#���$������ 33

(���)
�����������
in � !���
���� 11, 31

(���)�����
in � !��
���� 41
�������.

364 ���
���������	������������

 ����� 41
�������
��).

� !���!�������!�������!
��'#��������� 79

��������#���, in � !���!�������!���������/�)
101, 103

(���������(#������
�
in � !��

thrown 52, 55, 238
(������������	�����

in � !���!�������
���� 78
�������.

����� 78
(#������
�

in � !��
thrown 43, 53, 238
�'��	���).

� !���!��
�����"��!
��
�����"�� 229

� !���!�����������"��!���� 283
� !���!�����������"��!
��#�������

288
� !���!�����������"��!

��&��'��"#������� 289
� !���!�����������"��!
��;���;��� �

282
� !���!�����������"��!

�����������"�� 283
� !���!�����������"��!���#�������

288
� !���!�����������"��!

���&��'��"#������� 289
� !���!��� �����"��!����� 37
� !���!��� �����"��!����� 48
� !���!��� �����"��!��� �����"�� 27
� !���!���"��!���� 35
� !���!���"��!����� 47
� !���!���"��!������� 36
� !���!���"��!
��++>#����� 65
� !���!���"��!����E�
����� 65
� !���!���"��!���++>#����� 65
� !���!���"��!���"�� 32
� !���!�������!������!����� 76
� !���!�������!��
��������!

����� 262
� !���!�������!��
��������!

�����
���>���"��
 264
� !���!�������!��
��������!

������� 262
� !���!�������!��
��������!

���������� 262
� !���!�������!��
��������!

���� 261
� !���!�������!��
��������!

��� 262
� !���!�������!��
��������!

����� � 263
� !���!�������!��
��������!

���� 263
� !���!�������!��
��������!

'���� 263

� !���!�������!��
�����"��!
����� � 233

� !���!�������!��
�����"��!����
233

� !���!�������!*������
>)��������!
'���� 77

� !���!�������!#������������������!
����� 78

� !���!�������!�����������"��!����
282

� !���!�������!�����������"��!
���;���;��� � 282

� !���!�������!D�����>)��������!
��� 77

� !���!�������!��������
>)��������!
��� 77

� !���!�������!��� �����"��������!
����� 118

� !���!�������!��� �����"��������!
���� 117

� !���!�������!��� �����"��������!
���"�� 118

� !���!�������!���"��������!����
118

� !���!�������!K������>)��������!
'���� 77

java.rmi!��� ��!D�#���������"��C����)!
��������"�� 50

java.rmi!��� ��!D�#��� �����"��C����)!
�������� �����"�� 50

� �!���!��� �����"��C����)!
�������� �����"�� 143

� �!���!���"��C����)!��������"�� 143
�������������, in � !���!�������!

���������/�) 103
������
������������, in � !���!#���$������ 12
����
����*��, in � !���!�������!

��
�������� 264
���
�����

in � !���!��
�����"�� 231
in � !���!��� �����"�� 31
in � !���!���"�� 35

����
�����
in � !���!��
�����"�� 236
in � !���!��� �����"�� 48
in � !���!���"�� 48

���
�����������, in � !���!�������!
���������/�) 103

���
���������
in � !���!��
�����"�� 232
in � !���!���"�� 36
in � !���!�������!��
�������� 262

��(��
���'
����, in � �!���!���!���	�
��� 188
��(���)	���
0���, in � !���!���"�� 45, 47
��($2�
����������������, in � !���!

#���%$������ 12
�������
������������, in � !���!#���$������ 12
���

������, in � !���!#���$������ 12
��/�-�
�����, in � !���!#���$������ 12
��/������
�����, in � !���!#���$������ 12
��/�&
���
�����, in � !���!#���$������ 13
��/�#�*�
�����, in � !���!#���$������ 13

��������$��
�% 365

��/�)����
�����, in � !���!#���$������ 13
��/�����������������, in � !���!#���$������ 13
��#����

in � !���!�������!������ 76
in � !���!�������!��
�������� 262

��#���
���'
����, in � �!���!���!���	�
���
188

��#����)	���
0���, in � !���!���"�� 43
��!���������, in � !���!�������!���������/�)

103
��)����
�����, in � !���!#���$������ 13
��$������, in � !���!�������!���������/�) 103
��%���������, in � !���!�������!���������/�)

103

J
Java packages ��� individual class entries
4
��-�
���, in � !���!�����������"�� 284

K
5��/���*�����������
�

in � !�������)
�'��	���).

� �!���!���!����������!���� 166
5��/���*��

in � �!���!���
���� 166

5��/���*�� ���
��
in � �!���!���
���� 165

L
�����-�
���, in � !���!�����������"�� 284
�������, in � !���!>����� 86

M
/��������)
����

in � !���
constructor 283
�������.

��#������� 288

��������"���� 286

��&��'��"#������� 289

��;���;��� � 282
����*���� 284
�� �*���� 284
���� 282
���#������� 288
���������"���� 286
���&��'��"#������� 289
���;���;��� � 282

N
&��'".�)5, in � �!���!���!���	�
���D�����!

B����"������ 189
&��'"�&%!�+, in � �!���!���!

���	�
���D�����!B����"������ 189
&��'"%!�+, in � �!���!���!���	�
���D�����!

B����"������ 189
&��0
��(��������

in � !���
���� 13
�������.

��#���$�������� 13

��&��'��"#�������� 13

!���
���.
� !���!�����������"��!����*���� 284
� !���!�����������"��!�� �*����

284
� !���!�����������"��!

���&��'��"#������� 289
�������
��):

� !���!�����������"��!

��&��'��"#������� 289

��0�	�������, in � !���!�������!������� 79
��0(���)�������, in � !���!�������!

������� 79
��0#����)�������, in � !���!�������!

������� 79
&
!
���.
�
��������
�

in � !���
thrown 53

&
)��	��*
���	�������
�
�'��	���).

� �!���!���!����������!
��#������ 166
&#."��&')��5(&-, in � �!���!���!

���	�
���D�����!B����"������ 189

O
#�4���(���

in � !��
���� 80

#�4���(���)�����
in � !��
���� 40–42
�������.

���+����� 41
#�4���#����

in � !��
���� 80

#�4���#����)�����
in � !��
���� 40, 227

#5, in � �!���!���!���	�
���D�����!����� 189
#+"����+., in � !���!�������!���������/�)

100, 124–125
#+"�#&&��., in � !���!�������!

���������/�) 100–101, 124–125
#+"!��', in � !���!�������!���������/�)

101, 124–125

366 ���
���������	������������

#+"%!(.�, in � !���!�������!���������/�)
101, 124–125

����
in � !���!�������!��
�������� 261
in � !���!�������!��� �����"�������� 117
in � !���!�������!���"�������� 118

#����)�����
in � !��
���� 79

P
+
��������	����������
�

in � !���
thrown 232, 238

����
���, in � !���!>����� 86
+�������

in � !�������)
�������
��).

� �!���!���!B����"����������	 ���!

��:���:������� 150

� �!���!���!����������!

��:���:������� 156

+�
�
�
�������
�
in � !���

thrown 53
+�
��

in � !���
���� 134
!���
���.

� !���!���"��!���"�� 32
+��	����(���)�����

in � !��
���� 41

��$������, in � �!���!���!���������� 156–157

R
!���
������� ���

in � !��
���� 78
�������.

�������� 78
������

in � !���!�������!��
�������� 262
in � !���!�������!D�����>)�������� 77
in � !���!�������!��������
>)��������

77
!������������	�����

in � !���!�������
���� 76–77
�%���
�
��).

� !���!�������!>)�������� 77
� !���!�������!

��������
>)�������� 77
�������.

��� 77
!���
���.

� !���!�������!�������!
��'#��������� 79

�������
��).
� !���!�������!�������!��'������

79
�����	����, in � !��!��#��������� 41
����'
������, in � !��!��#��������� 41
���� �
����, in � !��!��#��������� 41
���� ������, in � !��!��#��������� 41
����(����, in � !��!��#��������� 41
�����
�*��, in � !��!��#��������� 41
����#�4�����, in � !��!+�����#��������� 41
!���#���������������
�

in � !���
thrown 85

����)	
����, in � !��!��#��������� 41
�����. ��, in � !��!��#��������� 41
�����#���, in � !���!�������!���������/�)

103
���������

in � !���!��
�����"�� 233
in � !���!�������!��
�������� 263

��������*��, in � !���!>����� 86
���
�������	����
����������������, in � �!

���!���!������"�� 149
���
��$������, in � �!���!���!���������� 156–

157
�������, in � !���!>����� 86
��0�����, in � !���!>����� 86
!/(������)
���� ���
��

in � !���!��� ��
���� 50
�������.

��������"�� 50
�H��� 51

!/()�����)
���� ���
��
in � !���!��� ��
���� 50
�������.

�������� �����"�� 50
!/()
���� ���
��

in � !���!��� ��
���� 50
�������.

�������� �����"�� 50
��������"�� 50

��������C����) 50
���������C����) 50

S
)��������*�����	�����

in � !���!�������
���� 76–77
�������.

��� 77
)�����!���
�

in � !�������)
!���
���.

� �!���!���!����������!���� 166
)�������������
�

in � !��

thrown 53, 160, 238

��������$��
�% 367

��������, in � !���!�������!�������� 101, 104–
105, 107, 111, 113, 123, 125, 265, 268, 319, 322

)����������	�����
in � !���!�������
���� 76, 100–101
�������.

 ���+�� 101
�������
��).

� !���!�������!
��
�����"��������!
�����
���>���"��
 264

� !���!�������!���������/�)!������
103

)������
�5��
in � !���!�������
���� 100, 103, 205
�������.

���� 103
�������� 103
����� 103
������ 103
��������+�� 101, 103
��$�������� 103
������������ 103
��D����� 103
��(��� 103
��K������ 103
+:9$��	:; 100, 124–125
+:9�+&&	�; 100–101, 124–125
+:9D	$� 101, 124–125
+:9KD#;	 101, 124–125
���)+�� 103
�������� 103

�������
��).
� !���!�������!���������/�)!

��������+�� 103
������&
0��, in � !���!�������!�������� 104–

105, 110, 123
)�����
�

in � !���!�������
���� 100, 104
�������.

������ 101, 104–105, 107, 111, 113, 123, 125,
265, 268, 319, 322

������&�' 104–105, 110, 123
�������
��).

� !���!�������!���������/�)!��������
103

������
���, in � !���!�������!���������/�) 103
������

in � !���!��
�����"�� 233–234
in � !���!�����������"�� 282
in � !���!�������!!��
�������� 263

������*���'�����, in � !���!���"�� 65
)�����)
����

in � !���
���� 19–20, 27, 31, 37, 55–56
�%���
�
��).

� �!���!���!������ �����"�� 147
initialization 27
�������.

����� 28, 31, 38, 48, 55, 155

���� 31–32
����� 48

��#���$������ 29–30

������:��� 27

���������"��$������ 29

��D���� �>�������?� 56

��D����$������ 30
��>���� 31
�������� 48
��� �����"�� 27
���:���������:���������� 69
���D���� �>�������?� 56
���D����$������ 30
�����;������ 55

�������
��).
� �!���!��� �����"��C����)!

�������� �����"�� 143
ServerSocketChannel.socket 118

timeout 55
)�����)
�����	�����

in � !���!�������
���� 76, 100, 117
�������.

����� 118
���� 117
���"�� 118

�������
��).
� !���!�������!��� �����"��������!

���� 117
)�����)
���� ���
��

in � �!���
���� 143
�������.

�������� �����"�� 143

�������� 143

������������, in � !���!��
��:�"�� 228
���'�����, in � !���!��
��:�"�� 227
���'������ ���
����, in � !���!��� ��!

D�#���"��C����) 50
������������	��)�������

in � �!���!���!������ �����"�� 153
in � �!���!���!������"�� 153

����������+�
�
�
����
in � �!���!���!������ �����"�� 154
in � �!���!���!������"�� 154

���������)����
�������
���
in � �!���!���!������ �����"�� 155
in � �!���!���!������"�� 155

���(����������, �� � !���!�����������"�� 288
������*�	��, in � !���!��
��:�"�� 227
����

����/
����, in � !���!

�����������"�� 286
���&������������	��

in � �!���!���!������ �����"�� 152
in � �!���!���!������"�� 152

���&��0
��(����������, in � !���!
�����������"�� 289

���#�������, in � !���!��
��:�"�� 227
���##�(�������, in � !���!���"�� 65
���+���
������+������������

in � !���!��� �����"�� 69
in � !���!���"�� 69

368 ���
���������	������������

���+
����, in � !���!��
��:�"�� 228
���!������������)�1���

in � !���!��
�����"�� 240
in � !���!��� �����"�� 56
in � !���!���"�� 35, 56

���!�������������
in � !���!��
�����"�� 230

���!�������������, in � !���!��� �����"�� 30,
36

���)���������)�1���
in � !���!��
�����"�� 241
in � !���!���"�� 56

���)
�������������, in � !���!��
��:�"��
228

���)
���*����, in � !���!���"�� 61
���)
.���
����

in � !���!��
�����"�� 240
in � !���!��� �����"�� 55
in � !���!���"�� 54

���.�&
'������, in � !���!���"�� 60
���.���.
������, in � !���!�����������"��

282
���.�������������

in � !���!��
�����"�� 243
in � !���!���"�� 66

������������/
����
in � �!���!���!������ �����"�� 151
in � �!���!���!������"�� 151

���%������������	��
in � �!���!���!������ �����"�� 152
in � �!���!���!������"�� 152

�	���
0�(�����
in � !���!���"�� 45
in � �!���!���!������"����������������� 147

�	���
0�#������
in � !���!���"�� 43
in � �!���!���!������"����������������� 147

)����	�����
in � !���!�������!:���
���� 100

)
����
in � !���

and firewalls 132
���� 19, 23, 32–36
�%���
�
��).

� �!���!���!������"�� 147
�������.

����� 47, 62–63
������� 32

��#���$������ 33

��#��������� 41

������$������ 34, 37

������:��� 28, 34

���������"��$������ 37

��++>#����� 65

��+���������� 38

��:��� 33

��D���� �>�������?� 35, 56

��D����$������ 36

������>�������?� 56

�������
�� 61

����;������ 54–55

��;��&����) 60

��;��������� 66
��>���� 35
�������� 48
����������� 36
��#����������'� 45, 47
��+�����������'� 43
����E�
����� 65
���++>#����� 65
���:���������:���������� 69
���D���� �>�������?� 35, 56
���D����$������ 36
�������>�������?� 56
��������
�� 61
�����;������ 54
���;��&����) 60
���;��������� 66
������'�#���� 45
������'�+����� 43

�������
��).
� !���!��� �����"��!����� 20, 37
� !���!�������!���"��������!���"��

118
� �!���!���"��C����)!��������"�� 143

�
������
in � !���!�������!��� �����"�������� 118
in � !���!�������!���"�������� 118

)
�����������
in � !���
���� 11
!���
���.

� !���!��
��:�"��!
��
��:�"�� 226

� !���!��
��:�"��!
������"��$������ 228

� !���!��
�����"��!
��
�����"�� 229

� !���!�����������"��!���� 283
� !���!�����������"��!����*���� 284
� !���!�����������"��!�� �*����

284
� !���!�����������"��!

�����������"�� 283
� !���!���"��!���� 35
� !���!���"��!������� 36
� !���!�������!���"��������!����

118
�������
��).

� !���!��
��:�"��!

�����"��$������ 228

� !���!��� �����"��!

���������"��$������ 29

� !���!�������!��
��������!
����� � 263

)
�����	�����
in � !���!�������
���� 76, 100, 118, 122, 205
�������.

����� 122
���� 118
���"�� 118

�������
��).

��������$��
�% 369

� !���!�������!��� �����"��������!
����� 118

� !���!�������!���"��������!����
118

)
����������
�
in � !���

thrown 30, 46, 53, 62–63, 239
�'��	���).

� !���!��
�����"��!

��D���� �>�������?� 240

� !���!��
�����"��!
����;������
240

� !���!��
�����"��!
��;���������
243

� !���!��
�����"��!
���D���� �>�������?� 240

� !���!��
�����"��!�����;������
240

� !���!��
�����"��!���;���������
243

� !���!�����������"��!

��������"���� 286

� !���!�����������"��!
���������"���� 286

� !���!��� �����"��!����� 48
� !���!��� �����"��!

��D���� �>�������?� 56
� !���!��� �����"��!
����;������ 55
� !���!��� �����"��!

���:���������:���������� 69
� !���!��� �����"��!

���D���� �>�������?� 56
� !���!��� �����"��!�����;������ 55
� !���!���"��!
��D���� �>�������?� 56
� !���!���"��!
��D����$������ 36
� !���!���"��!
������>�������?� 56
� !���!���"��!
�������
�� 61
� !���!���"��!
����;������ 54
� !���!���"��!
��;��&����) 60
� !���!���"��!
��;��������� 66
� !���!���"��!

���:���������:���������� 69
� !���!���"��!���D���� �>�������?� 56
� !���!���"��!���D����$������ 36
� !���!���"��!�������>�������?� 56
� !���!���"��!��������
�� 61
� !���!���"��!�����;������ 54
� !���!���"��!���;��&����) 60
� !���!���"��!���;��������� 66

)
���� ���
��
in � �!���
���� 143
�������.

��������"�� 143

�������� 143

)
����+�������
�
in � !���
���� 51

)
����.���
��������
�
in � !���

thrown 54, 239
)
�����	�����

in � !���!�������!:���
���� 100

))��
�����
in � �!���!���
���� 156, 165, 187
�������.

��������	�
��� 187

���������������������� 166

��#������ 166

��:������� 166

����� ���������������� 166

����� �����"��C����) 166

���������������� 156, 160

�����"��C����) 166

))���*���
in � �!���!���
���� 186–188, 191
�������.

�����#������ 188
�����+������� 188

��B����"������ 191
��#���������� 188
��+����������� 188
��'�� 187
'�� 187

))���*���!�����
in � �!���!���
���� 187–188
�����������.

HandshakeStatus 189–190
Status 189

�������.

��B����"������ 189

������� 189

))���*���!�����������	���)�����, in � �!���!
��� ��� B����"������

))���*���!������)�����, in � �!���!��� ���
�����

))�������
�
in � �!���!���

thrown 172
�'��	���).

� �!���!���!���	�
���!�����#������
188

� �!���!���!���	�
���!�����+�������
188

� �!���!���!���	�
���!��'�� 187
� �!���!���!���	�
���!'�� 187

))������	���������
�
in � �!���!���

thrown 172
))�5��������
�

in � �!���!���
thrown 173

))�+�������������������
�
in � �!���!���

thrown 173
�'��	���).

� �!���!���!B����"����������	 ���!

��:����������������� 150

� �!���!���!B����"����������	 ���!

��:�������������� 150

370 ���
���������	������������

� �!���!���!B����"����������	 ���!

��:���:������� 150

� �!���!���!����������!

��:����������������� 156

� �!���!���!����������!

��:�������������� 156

� �!���!���!����������!

��:���:������� 156

))�+�������
�
in � �!���!���
���� 160
getSSLSessionContext, permission value

160
))�+�
�
�
�������
�

in � �!���!���
thrown 173

)��!/(������)
���� ���
��
in � �!���!���
���� 162

)��!/()�����)
���� ���
��
in � �!���!���
���� 162

))�)�����)
����
in � �!���!���
���� 147
�������.

��	����������������� 153

��	�����:�������� 154

��	������������������ 155

��&���������$��� 152

����������������������� 152–153

�����������:�������� 154

��E������������ 151

��K��������$��� 152
���	����������������� 153
���	�����:�������� 154
���	������������������ 155
���&���������$��� 152
���E������������ 151
���K��������$��� 152

))�)�����)
���� ���
��
in � �!���!���
���� 144
�������.

�������� 144

�������������������� 152

����������������������� 152–153

�������
��).
� �!���!���!����������!

����� �����"��C����) 166
))�)����
�

in � �!���!���
���� 156
�������.

������������� 156

���������;��� 156

��#� 156

�����$�������;��� 156

����������������� 156

��:����������������� 156

��:�������������� 156

��:���B��� 156

��:���:��� 156

��:������� 156

��(��� 156–157

��(���&��� 156–157
���(��� 156–157
���� �(��� 156–157

�������
��).
� �!���!���!B����"����������	 ���!

��������� 150
))�)����
�������*�����

in � �!���!���
!���
���.

� �!���!���!���>�����
��������!
 ���>���� 160

� �!���!���!���>�����
��������!
 ���E������ 160

))�)����
�������*��������
in � �!���!���
���� 159–160
�������.

 ���>���� 160
 ���E������ 160

))�)����
��
�����
in � �!���!���
�������
��).

� �!���!���!����������!

���������������������� 166

� �!���!���!����������!

����� ���������������� 166

� �!���!���!����������!

���������������� 160

))�)
����
in � �!���!���
���� 147
�������.

��B����"������������������ 149

��	����������������� 153

��	�����:�������� 154

��	������������������ 155

��&���������$��� 152

����������������������� 152–153

�����������:�������� 154

��E������������ 151

��K��������$��� 152
���� �B����"������������������

149
���	����������������� 153
���	�����:�������� 154
���	������������������ 155
���&���������$��� 152
���E������������ 151
���K��������$��� 152
������'�#������������������� 147
������'�+�������������������� 147
����B����"� 148

�������
��).
� �!���!���!B����"����������	 ���!

�����"�� 150
))�)
���� ���
��

in � �!���!���
���� 144
�������.

��������$��
�% 371

�������� 144

�������������������� 152

����������������������� 152–153

�������
��).
� �!���!���!����������!

�����"��C����) 166
����������	�����, in � �!���!���!������"�� 148
)�����

in � �!���!���!���	�
���D�����
���� 189
�������.

>ECC	D9+(DC�+K 189
>ECC	D9E&�	DC�+K 189
��+�	� 189
+/ 189

T
.	���� ���
��

in � !����!����������
���� 336

.	����+

�������
�
in � !����!����������
���� 336
�����������.

DiscardPolicy 336
.����/���*��

in � �!���!���
���� 166

.����/���*�� ���
��
in � �!���!���
���� 165

U
����
0��
��������
�

in � !���
thrown 54, 239
�'��	���).

� �!���!���"��C����)!��������"�� 143
����
����#�����
�������
�

in � !��

�'��	���).

� �!���!���!������"��!
��++>#�����
147

� �!���!���!������"��!����E�
�����
147

� �!���!���!������"��!���++>#�����
147

� �!���!���!������"��!������'�#����
147

� �!���!���!������"��!
������'�+����� 147

��0����, in � �!���!���!���	�
��� 187
�!�

in � !���
���� 132

�!��
������
�

in � !���
���� 132

V
�����#���, in � !���!�������!

��������������� 101
������
�����, in � �!���!���!

����������>�����
�������� 160
��������
�����, in � �!���!���!

����������>�����
�������� 160

W
0����, in � �!���!���!���	�
��� 187
%������������	�����

in � !���!�������
���� 76–77
�%���
�
��).

� !���!�������!>)�������� 77
� !���!�������!

*������
>)�������� 77
�������.

'���� 77
!���
���.

� !���!�������!�������!
��'+���������� 79

�������
��).
� !���!�������!�������!��'������

79
0������

in � !���!�������!��
�������� 263
in � !���!�������!*������
>)��������

77
in � !���!�������!K������>)�������� 77

X
6789�����������

in � �!�������)!����
�������
��).

� �!���!���!
B����"������������������!

��:����������������� 150

� �!���!���!����������!

��:����������������� 156

373

&��������
�%

A
accept operation 19, 37
���-based protocols 256
active socket 19
address

allocation, for multicast group 291
broadcast 271
multicast

defined 272
IPv4 272
IPv6 272

administrator, network, more than one 341
��� (Asynchronous Layered Coding

protocol) 295
allocation, of buffer 81
anonymous connection, security of 140
anycast 269
application firewalls 131
application proxy firewall 131
Asynchronous Layered Coding protocol

(���) 295
authentication 135

client 147, 152
server 147, 151

authorization 135
decision taken by application 135
peer 150

 ����� method of ������"�� always returns
zero 147

B
backlog 311

altering 353
behaviour when full 354
default value 354
defined 28

bandwidth 25

is not infinite 341
bandwidth-delay product 58, 356
Berkeley Sockets 4–5, 32, 39, 41, 61, 78

	�B����������� 242
���B��, 65
��
�56 78
����56 242
������56 97, 99, 124
�	�������� 65
���B������0 61
	�����56 78

bind operation 19, 35, 283
datagram socket 231

blocking mode 96, 299
datagram channel 262–263
setting 98
��� 217

bounded queue 310
broadcast 269–276

address 269
defined 271
directed 271
IPv4 271
IPv6, not supported by 271
limited 271

and routers 276
considered harmful 276
IPv6, not supported by 271
loopback 280
multi-homing 280
not supported by IPv6 271
permissions 291
receiving 279
sending 278

browsers, Web 137
buffer, �	� 74–75

allocation 81
capacity 80
class hierarchy 82
clear operation 81, 86
compact operation 81, 89

374 ���
���������	������������

copy idiom 89
creating 82
defined 80
direct 92
duplicate operation 81, 83
flip operation 81, 87
get 81
get, absolute 84
get, relative 84
initial settings 83
invariants 81
limit 81
mark 81, 86
needed for SSLEngine 191
not thread-safe 96
position 81
put 81
put, absolute 84–85
put, relative 85
read-only 85
rewind operation 81, 88
slice operation 81, 83
state attributes 80
state operations 85–86
view 93
wrap operation 81, 83

Bug Parade 125
bulk data transfer 26

C
callback 205

and HTTP tunnelling, limitation 133
handshake completion 150

capacity, of buffer 80
certificate

local 157
peer 157
X.509 135

channel 74–76
conversions between D����/K����� and 79
conversions between streams and 79
converting to D����/K����� 79
converting to stream 79
interfaces and classes 75
obtaining

for file 78
for socket 78
from :��� 79

read 81
registering with selector 100
write 81

channel I/O 42
multicast, not supported 290
with secure sockets 162

cipher suites 139, 147, 152, 156
enabled 152
non-authenticating 142, 151, 153
supported 152

clear, buffer operation 81, 86
client 19, 23, 224

authentication 152
mode, in ���#��� 151
models 299, 334

close operation 47
datagram socket 236
secure session 187

comments 188
���, negotiated, 4-way 25, 62

�����9�����) message, ���#��� 147, 190
������ state, of ��� port 351
�����%�	� state, of ��� port 123, 350
����	�� state, of ��� port 62, 350
compact, buffer operation 81, 89
connect operation 36

datagram channel 262
datagram socket 232
��� 36

negotiated, 3-way 25
��� 232

connection
disabling, in ���#��� 157
layered, in "��� 146–147
pooling 334

connection process, ��� 20
connection, anonymous, security of, in

���#��� 140
copy buffer idiom 89
cost, of transport, is non-zero 341

D
data sequencing, in ��� 25
data transfer, bulk, in ��� 26
datagram

defined 218
delivery 218

exactly-once model, implementing 220
intact if at all 219
is unreliable 217

I/O 233
jumbogram, IPv6 218
maximum size 354
no automatic pacing 219
no reassembly of 219
receiving 227–228, 234

length 227
sending 227–228, 234
sequencing 218
size constraints 218
transaction model 219
truncation of 219
unicast 270

datagram channel
blocking mode 262–263
connect 262
disconnect 262
multiplexing 264–265
must be connected for read 263
must be connected for write 263
non-blocking 264

datagram socket

&��������
�% 375

bind 231
close 236
connect 232
disconnect 233, 235
exceptions 237
I/O 233
local address 230
options 239
permissions 237
receive buffer 232
receive timeout 240
send buffer 232
shutdown, supported by FreeBSD 353

��
��:�"��, invariants 226
deadlock, object stream 42
debugging, and "��� 164
decryption 136
delivery model

at most once 220
exactly once 220

dependencies, platform 353
design patterns, callback 133
Deutsch, L. Peter, eight fallacies of

networking 339
differentiated services 67
Diffie-Helman key exchange 138
digital signature 140
direct buffer 92
disconnect operation

datagram channel 262
datagram socket 233, 235
��� 233, 235

distributed programming, fallacies of 339
��� (Domain Name System) 10
Domain Name System (���) 10
duplicate, buffer operation 81, 83

E
eavesdropping, passive attack 140
encryption 136

asymmetric 138
symmetric 137–138

equality, of ��	 socket factories 163
erasure codes 257
����,�	���� state, of ��� port 350
Ethernet 9
exceptions

in "��� 172
in ��� 232, 237

exponential backoff, in ��� 25

F
failures, network, cannot all be detected 344
fallacies, of distributed programming 339
-��, ��� erasure codes
-	�	����, SSLEngine handshake status 203
-	�%�	�%� state, of ��� port 350
-	�%�	�%� state, of ��� port 350

firewall 129
application 131
proxy 131
transport 130

flip, buffer operation 81, 87
forward error correction ��� erasure codes
FreeBSD 353

platform dependencies 353
FreeBSD, platform dependencies 353–356

G
gather-write 77–78, 162
General Protection Fault (��-), Windows 4
get, buffer operation 81, 84

�������������������,

SSLSocketPermission 160
��- (General protection fault), Windows 4
���%��	
��� "���%��	

H
half-close, ��� 43
handshake, ���#��� 138–139, 147, 156, 210

additional 149
automatic 148
completion callback 150
failure 148
in ���	�
��� 188
listener 148–149
manual 148
multiple, whether supported 149
whether synchronous or asynchronous 148

hard close, ��� 62–63
higher-order logic (HOL) 353
���� (Hypertext markup language) 130
���� (Hypertext transport protocol)

proxy 131
system properties for proxy 132
tunnelling 133

����!����)B��� 132–133
����!����):��� 132–133
����� (Hypertext transport protocol,

secure) 170
�����!������������ 173
�����!��������� 173
�����!����)B��� 174
�����!����):��� 174

I
I/O

multiplexed ��� multiplexing
non-blocking 162
scalable

��� 261
��� 233

idempotent transaction 219
identifier, of ���#��� session 156

376 ���
���������	������������

input shutdown 45
input, ��� socket 41
integrity, of message 135–136
interest set, of selection key 100, 125, 201, 205,

212
may be empty 101

Internet 9, 129, 132, 345
invalidate, ���#��� session 156
invariants

of ��
��:�"�� 226
of �	� buffer 81

	� (Internet protocol), fundamentals 9–16
	� address

IPv4 10
IPv6 10

	�B����������� option, Berkeley Sockets 242
IPv4 9–10, 14, 16, 32

multicast address 272
type of service 66

IPv6 9, 14–16, 32
does not support broadcast 271
jumbograms 218
multicast address 272
traffic class 67

J
Java Genetic Security Services Application

Programming Interface, ��� "���%��	
Java Reliable Multicast Service ("���) 295
Java Secure Sockets Extension, ��� "���
� !���!������IPv4���", system property 15
� !���!������IPv6$��������, system

property 15
� !���!��������!������!�"
�, system

property 174
� �!���!����
, system property 164, 174
javax.net.ssl.keyStore, system property 142
� �!���!���!"�)�����, system property 174
javax.net.ssl.keyStorePassword, system

property 142
� �!���!���!"�)�����:��'���, system

property 174
javax.net.ssl.trustStore, system property 142
� �!���!���!����������, system property 174
javax.net.ssl.trustStorePassword, system

property 143
� �!���!���!����������:��'���, system

property 174
� �!���!���!����������;)��, system

property 174
"���%��	 (Java Genetic Security Services

Application Programming Interface) 181
"��� (Java Reliable Multicast Service) 295
"��� 135

debugging 164
installation 141

jumbogram, IPv6 218

K
keep-alive, ��� 54, 63–65, 355
key

encryption, length of 136
exchange

Diffie-Helman 138
��� 138

session key 136, 138–139
keystore 141–143, 166

L
��� (local area network) 129
����%��� state, of ��� port 351
latency 55, 356

is not zero 340
���� (Lightweight directory access protocol) 27
Lightweight directory access protocol (����) 27
limit, of buffer 81
linger

on close, ��� 44, 61
timeout 355

Linux 354
peculiarities of 46
platform dependencies 353–356

�	���� state, of ��� port 349
listening socket 19

backlog, altering, in FreeBSD 353
local interface 29
shutdown, supported by FreeBSD 353

Little’s formula 302
local address, re-using 230
local area network (���) 129
local interface 29, 33–34, 230

listening at 29
local port 27, 229
loopback

address, in 	� 12
broadcast 280
multicast 286

M
MacOS/X, peculiarities of 30
mark, of buffer 81, 86
message digest 136
models, architectural

client 299, 334
server 299

considerations for 300
���B��, option, Berkeley Sockets 65
multicast 269–295

address 269
allocation 291
defined 272
IPv4 272
IPv6 272

and multi-homing 286–287, 289–290

&��������
�% 377

and routers 277
applications 277
benefits of 275
group 272

address allocation 291
joining 272, 274, 284
leaving 272, 274, 285
membership, no built-in way of

determining 277
limitations 275
loopback 286
permissions required for 291
receiving 283, 285
reliable 292
scope 272

address-based 272
administrative 272
continent-local 272
dynamic 272
global 272
link-local 272
node-local 272
organization-local 272
region-local 272
site-local 272
���-based 272, 282

scoping
dynamic 282

security of 276
sending 282
time-to-live (���) 282

�����������"��, initializing 283
multi-homed host

defined 13
������� multi-homing

multi-homing 11, 29, 34, 59, 230, 241
���

clients 60
servers 59

���
and broadcast 280
and multicast 286–287, 289–290
clients 242
servers 242

multiplexed I/O ��� multiplexing
multiplexing 73, 75, 98, 322, 325

and scalability 99
datagram channel 264–265
requires non-blocking mode 98

N
����-based protocol 256
Nagle’s algorithm, ��� 60–61
��� (Network address translation) 10, 134
negotiated close, 4-way 25
negotiated connect, 3-way 25
Netscape 137
������ command 349
network

failures cannot all be detected 344

has no single time 345
is not a disk 342
is not homogeneous 342
is not reliable 340
is not secure 341
no central resource allocator 345
no single point of failure 345
resources are not infinite 344
time servers 345
topology does not change 341

Network address translation �������
Network interface controller (�	�) 10
new I/O ��� buffer, channel, blocking, non-

blocking
�	� (network interface controller) 10
�	� (New I/O) ��� buffer, channel, blocking,

non-blocking
non-authenticating cipher suite 151, 153
non-blocking I/O 73, 96

and architecture 299
and datagram channel 264
and secure sockets 162, 186
connect 97
multiplexing 98
performed with channels 97
read 97
select 97
setting 98
write 97

non-repudiation, of secure message 140
notify 205

O
object stream deadlock 40, 42
+�����#���������

adds its own protocol 40
deadlock 40

+�����+����������, adds its own protocol 40
OOBInline, socket state, not supported by

������"�� 147
+:9$��	:;, do not use with +:9D	$� 101
+:9�+&&	�;, do not use with +:9KD#;	 101
+:9D	$�, do not use with +:9$��	:; 101
+:9KD#;	, do not use with +:9�+&&	�; 101
options

of datagram socket 239
of ��� socket 54
of ��� socket 239

out-of-band data 65
output, ��� socket 38

P
pacing, in ��� 25
packet headers, 	� 57
packet size 57
passive socket 19
performance preferences 68
permissions

378 ���
���������	������������

for broadcast 291
for multicast 291
for ��� 51
for ��� 237

platform dependencies 353
FreeBSD 353–356
Linux 354–356
Solaris 354
Unix 354, 356
Windows 354–356
	����� 29, 46

point-to-point (unicast) 269
!����)���� tool, "�� 51
port number 10

��� 27
��� 229

system-allocated 229
well-known 10, 130

port states, ���
��� ���: port states

!����!!�� service, in ��� 27, 230
position, of buffer 81
Posix 65
privacy, of communication 135–136
programming, distributed, fallacies of 339
protocols

���-based 256
enabled, in ���#��� 154
����-based 256
session, in ���#��� 157
supported, in ���#��� 154, 166

proxy
application (in firewall) 131
���� 131
����� 132–133

proxy firewall 129, 131
proxy server 44
put, buffer operation 81, 84

Q
queue, bounded 310
queue, length of, predicted by queueing

theory 302
queueing theory 299–302

Little’s formula 302
parameters 301
predicts queue length 302

R
��	� 259
read channel 81
read timeout

of ��� socket 54
of ��� socket 240

read, of datagram channel, must be
connected 263

D����, converting to channel 79
��
�56(Berkeley Sockets 78

ready operations, of selection key 102
receive buffer

and ��� window scaling 30
��� 35, 41, 56–57
��� 232, 240–241

receive timeout
of ��� socket 54
of ��� socket 240

receiving, multicast 283, 285
����56(�"������)�������� 242
Redundant array of inexpensive disks

(��	�) 259
reliable ��� 245–255
D��������
�����"�� 246–255
remote objects, ��	 130
resources, are not infinite 344
rewind, buffer operation 81, 88
��	

and secure sockets 162
registry port 130
remote objects 130
���
 utility 130
socket factories 163

���
 utility 130
round-trip time 340
routers

and broadcast 276
and multicast 277

��� key exchange 138
��� (round-trip time) 340

S
scalable I/O

secure sockets 185
��� 261

scatter 78
scatter-read 77–78, 162
secure session

closing 187
implementation issues 188

Secure Socket Layer (���) 135–184
secure sockets 135–184

and ��	 socket factories 162
channel I/O with 162
non-blocking 186
scalable 185

security
authentication

of client 147, 152
of peer 135, 150
of server 151

authorization
of peer 135

must be decided by application 135
depends on 135
integrity of conversation 135–136
non-repudation 140
of multicast 276
privacy of conversation 135–136

security analysis, of ���#��� 140

&��������
�% 379

���� (staged event-driven architecture) 336
segment, ��� 20
������56, Berkeley Sockets 97, 99, 124
selector

creating 100
ready operations 102
registering channel 100

semaphores 205
send buffer

��� 38, 56–57
��� 232, 240–241

sending, multicast 282
server 19, 23
server mode, in ���#��� 151
server models 299

considerations for 300
server, authentication of 151
services, single-threaded 334
session context, ���#��� 147, 160

not supported in all environments 160
really a kind of session manager 160

session, ���#��� 138, 155
binding 157, 159
cache 160–161
creation 156

disabling, in ���#��� 155
defined 156
identifier 156
invalidation 157
key 136, 138–139
local certificate 157
management 147, 157, 159

principles 159
via session context 160

name, value pairs 157, 159
peer certificate 157
protocol 157
resumption 137–138, 148, 156, 159–160
sharing 147, 158, 187
timeout 160–161

shutdown 44
datagram socket, supported by FreeBSD 353
input 43, 45–46

behaviour at sender 356
behaviour in select 355

listening socket, supported by FreeBSD 353
output 43

behaviour in select, platform-
dependenct 356

signature, digital 140
�	�����, Unix signal 4
single-threaded

clients 334
services 334

�	��������, Berkeley Sockets 65
slice, buffer operation 81, 83
slow start, ��� 25–26
socket

defined 11
secure 135–184
��� 19

active 19

close 47
input 41
linger on close 61
listening 19
output 38
passive 19
read timeout 54
receive buffer 35, 41, 56–57
receive buffer, and window scaling 30
send buffer 38

��� 217
bind 231
local address 230
read timeout 240

socket address 11
socket buffers 356

default size, platform-dependent 354
maximum size, platform-dependent 355
minimum size, platform-dependent 355

socket factory 48
equality, in ��	 163
for datagram socket 236
for ��� socket 49
"��� framework 143, 145
��	, equality of 163

socket options 54
���"��:��������� actions

accept 52
multicast 291
��� 237

connect 52
multicast 291

listen 52
multicast 291
��� 237

resolve 52
����� proxy 132–133
���"�:���)B���, system property 132–133
Solaris, platform dependencies 354
���, ��� Secure Socket Layer
����������, initialization with non-null

/�)��
���required when authenticating
self 166

���	�
���
closure

implementation issues 197
complications in using 186
creating 187

���	�
�����
��
�����

design 193
implementation 199

constructor
design 192
implementation 195

design
overview 191
simplifying assumptions 194
state machine 194

�����
implementation 199

�������B����"�

380 ���
���������	������������

design 193
implementation 201

���
design 192
implemenation 196

�������
���;�"�
design 193
implementation(s) 204–205

'����
design 193
implementation 198

������"��������, not provided by Sun 186
Staged event-driven architecture 336
Stream, converting to channel 79
Stroustrup, Bjarne 5
Sun ��� 27, 230
synchronization, of distributed

components 343
�0�%����	��� state, of ��� port 350
�0�%���� state, of ��� port 349
system properties

for ���� proxy configuration 132
for "��� 173
for ����� configuration 132
����!����)B��� 132–133
����!����):��� 132–133
�����!������������ 173
�����!����)B��� 174
�����!����):��� 174
� !���!������IPv4���" 15
� !���!������IPv6$�������� 15
� !���!��������!������!�"
� 174
� �!���!����
 164, 174
javax.net.ssl.keyStore 142
� �!���!���!"�)����� 174
javax.net.ssl.keyStorePassword 142
� �!���!���!"�)�����:��'��� 174
javax.net.ssl.trustStore 142
� �!���!���!���������� 174
javax.net.ssl.trustStorePassword 143
� �!���!���!����������:��'��� 174
� �!���!���!����������;)�� 174
���"�:���)B��� 132–133

T
���

�����%�	� port state 123, 350
����	�� port state 350
connection process 20
����,�	���� port state 350
features and costs 24
-	�%�	�%� port state 350
-	�%�	�%� port state 350
fundamentals 19–72
����%��� port state 351
linger on close 44, 61

timeout 355
�	���� port state 349
Nagle’s algorithm 60–61
negotiated close, 4-way 25

negotiated connect, 3-way 25
port states 349–351
segment 20
server 223
slow start 25–26
�0�%����	��� port state 350
�0�%���� port state 349
�	��%�	� port state 62

���#	� 129
���B������0 option, Berkeley Sockets 61
Telnet 60, 65
thread 22, 223
thread-pool 205
threads, preallocating 307
thread-safe, buffers are not 96
thread-safety 212
throughput, maximum, of ��� 58
time servers 345
timeout 62

accept 55
linger, ��� 62
read

��� 54–55, 65
��� 240

time-to-live, multicast 282
�	��%�	� state, of ��� port 62–63, 351
timezones 345
���, ��� Transport Security Layer
Token-ring 9
topology, of network, does not change 341
traffic class 66

IPv6 67
udp 243

transaction, idempotent 219
transport cost, is non-zero 341
transport firewalls 130–131
Transport Security Layer (���) 135–184

client mode 151
recommendations 169

truststore 141–143, 166
tunnelling, ���� 133
type of service, IPv4 66

U
��� 130, 217, 269

benefits of 219
blocking mode 217
disconnect 233, 235
exceptions 237
I/O 233
jumbogram, IPv6 218
limitations of 219
permissions 237
port 229
port, system-allocated 229
reliable 245–255
scalable 261
socket 217
unicast 217

unicast 269–270

&��������
�% 381

unicast, ��� 217
Unix, platform dependencies 354, 356
urgent data 65
User Datagram Protocol, �������

V
view buffer 93

W
wait/notify 205
�� (Wide Area Network) 129
Web browsers 137
well-known ports 10, 130
wide area network (��) 129
wildcard address 12, 230

in multicast 284

window scaling, ��� 31
Windows

General Protection Fault (��-) 4
platform dependencies 353–356

	����� 39
	�����, peculiarities of 29, 46
wrap buffer 81, 83
write

channel 81
datagram channel

must be connected 263
K�����, converting to channel 79
	�����56(Berkeley Sockets 78

X
X Window System 60
X.509 certificate 135

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

